ПРИЛОЖЕНИЕ 2

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра радиотехнических систем

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

по дисциплине (модулю)

«Проектирование средств РЭБ на ПЛИС»

Специальность – 11.05.01 «Радиоэлектронные системы и комплексы»

ОПОП специалитета «Радиоэлектронная борьба»

Квалификация выпускника – инженер Форма обучения – очная Дисциплина предусматривает лекции, практические занятия и лабораторные работы. Изучение курса завершается экзаменом.

Успешное изучение курса требует посещения лекций, активной работы на практических занятиях и лабораторных работах, выполнения всех учебных заданий преподавателя, ознакомления с основной и дополнительной литературой.

Указания в рамках лекций

Во время лекции студент должен вести конспект материала.

Первый просмотр записей желательно сделать в день лекции. Лекцию необходимо прочитать, заполнить пропуски, расшифровать и уточнить некоторые сокращения, дополнить некоторые недописанные примеры. Особое внимание следует уделить содержанию понятий. Все новые понятия должны выделяться в тексте, чтобы их легко можно было отыскать и запомнить. Лекционный материал является важным, но не единственным для изучения учебной дисциплины. Его необходимо дополнить материалом из рекомендуемой литературы по теме. Список основной и дополнительной литературы по курсу представлен в рабочей программе дисциплины. Если обучающемуся самостоятельно не удалось разобраться в материале, необходимо сформулировать вопросы и обратиться за помощью к преподавателю на консультации или ближайшей лекции.

Обучающимся необходимо регулярно отводить время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам.

При конспектировании VHDL-кода программ рекомендуется отступами показывать вложенность основных его блоков.

Указания в рамках практических занятий

Практические занятия составляют важную часть профессиональной подготовки студентов. Основная цель проведения практических занятий — формирование у студентов практических навыков по проектированию цифровых устройств средствами языка VHDL в САПР Quartus II.

Методические указания к практическим занятиям по дисциплине наряду с рабочей программой и графиком учебного процесса относятся к методическим документам, определяющим уровень организации и качества образовательного процесса. Содержание практических занятий фиксируется в фонде оценочных средств рабочей программы дисциплины.

При подготовке к практическим занятиям необходимо просмотреть конспекты лекций и методические указания, рекомендованную литературу по данной теме.

Указания в рамках лабораторных работ

Лабораторные работы составляют важную часть профессиональной подготовки студентов. Они направлены на экспериментальное подтверждение теоретических положений и формирование учебных и профессиональных практических умений.

Выполнение студентами лабораторных работ направлено на следующие цели:

- обобщение, систематизацию, углубление, закрепление полученных теоретических знаний по конкретным темам дисциплин;
- формирование необходимых профессиональных умений и навыков.

Методические указания по проведению лабораторных работ разрабатываются на срок действия рабочей программы дисциплины и включают порядковый номер работы и наименование;

- цель работы;
- теоретические материалы, требуемые для выполнения работы;
- порядок выполнения работы;
- варианты индивидуальных заданий;
- список литературы;

Состав заданий для лабораторной работы спланирован с таким расчетом, чтобы за отведенное время они могли быть качественно выполнены большинством студентов.

Необходимыми структурными элементами лабораторной работы, помимо самостоятельной деятельности студентов, являются инструктаж, проводимый преподавателем, а так же организация обсуждения итогов выполнения лабораторной работы.

Выполнению лабораторной работы предшествует выполнение студентами домашнего задания до начала лабораторной работы.

Порядок проведения лабораторных работ в целом совпадает с порядком проведения практических занятий. Помимо выполнения работы для каждой лабораторной работы предусмотрена процедура защиты, в ходе которой после успешного синтеза цифрового устройства преподаватель выдает индивидуальное задание по модификации либо оптимизации спроектированного устройства, а также задаёт вопросы по коду описанного устройства и в целом о его работе.

Указания в рамках самостоятельной работы студентов

Рекомендуется проводить самостоятельную подготовку к лабораторным работам по материалам, прочитанным на лекциях, а также использовать сведения из основной и

дополнительной рекомендуемой литературы, в том числе методических указаний к лабораторным работам.

Обучающимся рекомендуется внимательно ознакомиться с вопросами, которые предусматривают самостоятельное изучение, и осмыслить характер задания. Затем следует найти источники информации по соответствующему вопросу, используя предложенный преподавателем список обязательной и дополнительной литературы, а также ресурсы интернета. Во время чтения рекомендуется осуществлять теоретический анализ текста: выделять главные мысли, находить аргументы, подтверждающие основные тезисы, а также иллюстрирующие их примеры и т.д. После этого можно приступать к выполнению задания, при этом важно помнить, что выполненное задание во всех случаях должно отражать основные выводы, к которым пришли в процессе самостоятельной учебной деятельности.

В качестве промежуточной аттестации используются опросы по результатам каждого раздела дисциплины, которые могут проходить при приеме лабораторных работ или выполнении индивидуальных заданий по материалам пройденных разделов.

Указания в рамках подготовки к итоговой аттестации

При подготовке к экзамену в дополнение к изучению конспектов лекций необходимо пользоваться учебной литературой, рекомендованной к настоящей рабочей программе. При подготовке к промежуточной аттестации нужно изучить теорию и самостоятельно решить задачи по синтезу на языке VHDL типовых цифровых устройств и при необходимости проверить правильность синтеза путем моделирования в САПР Quartus II.

К итоговой аттестации допускаются обучающиеся, выполнившие и сдавшие все лабораторные работы и практические занятия.

Экзамен проводится в письменно-устной форме и заключается в ответе на 2 теоретических вопроса (в устной форме) и решении задачи (в письменной форме): синтез студентом цифрового устройства с использованием языка VHDL.

Оценка «отлично» выставляется, если решена задача и даны правильные ответы не менее чем на 80% материалов вопросов, «хорошо» — решена задача и даны правильные ответы не менее чем на 60% материалов вопросов, «удовлетворительно» — решена задача или даны ответы не менее чем на 40% материалов вопросов. Оценка «неудовлетворительно» выставляется, если не решена задача.