МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Микро- и наноэлектроника»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.05 «Физика наносистем»

Направление подготовки 03.03.01 «Прикладные математика и физика»

Направленность (профиль) подготовки Электроника, квантовые системы и нанотехнологии

> Уровень подготовки Академический бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – очная

Рязань 2025 г.

1. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

- ПК-1.1 проводит моделирование и исследования функциональных, статических, динамических, временных, частотных характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения;
- ПК-2.1 анализирует научные данные, результаты экспериментов и наблюдений.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (зачтено, незачтено).

Паспорт фонда оценочных средств по дисциплине

№ II / II	№ раз дел а	Контролируем ые разделы (темы) дисциплины (результаты по разделам)	Код контроли- руемой компетен- ции (или её части)	Этап формирования контролируемой компетенции (или её части)	Вид, метод, форма оценочного средства
1	1	Введение	ПК-1.1	Лекционные занятия обучающихся в течение учебного семестра	экзамен
2	2	Атомы, молекулы и наносистемы	ПК-1.1, ПК-2.1	Лекционные, практические, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, отчеты по лабораторным работам с периодичностью 1 раз в две недели, экзамен
3	3	Атомные кластеры, нанотрубки,	ПК-1.1, ПК-2.1	Лекционные, практические, лабораторные и	Аналитический отчет по самостоятельной работе, результаты решения задач, отчеты по

		нанопроволоки, квантовые точки, системы с пониженной размерностью газа носителей заряда		самостоятельные занятия обучающихся в течение учебного семестра	лабораторным работам с периодичностью 1 раз в две недели, экзамен
4	4	Углеродные наноструктуры	ПК-1.1, ПК-2.1	Лекционные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, ответы на тестовые задания экзамен
5	5	Фотонные, оптические кристаллы	ПК-1.1, ПК-2.1	Лекционные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, ответы на тестовые задания экзамен
6	6	Наносистемы и квантовая оптика	ПК-1.1, ПК-2.1	Лекционные, практические, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, отчеты по лабораторным работам с периодичностью 1 раз в две недели, экзамен
7	7	Бионаносистемы	ПК-1.1, ПК-2.1	Лекционные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, ответы на тестовые задания экзамен
8	8	Спинтронные наносистемы	ПК-1.1, ПК-2.1	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, ответы на тестовые задания экзамен
9	9	Методы теоретического и экспериментальн ого исследования наносистем	ПК-1.1, ПК-2.1	Лекционные, практические, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, отчеты по лабораторным работам с периодичностью 1 раз в две недели, экзамен

2 Формы текущего контроля

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной

помоши.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях, по результатам выполнения обучающимися индивидуальных заданий, проверки качества конспектов лекций и иных материалов.

Текущий контроль по дисциплине «Физика наносистем» проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно и на лабораторных занятиях, а также экспресс — опросов и заданий по лекционным материалам и лабораторным работам. Учебные пособия, рекомендуемые для самостоятельной работы и подготовки к лабораторным занятиям обучающихся по дисциплине «Физика наносистем», содержат необходимый теоретический материал. Результаты самостоятельной работы контролируются преподавателем.

3 Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является экзамен. Форма проведения экзамена — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Целью проведения промежуточной аттестации является проверка компетенций, приобретенных студентом при освоении дисциплины.

4 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, шкал оценивания

Оценка степени формирования указанных выше (п. 1) контролируемых компетенций у обучающихся на различных этапах их формирования проводится преподавателем во время лекций, консультаций и лабораторных занятий по шкале оценок «зачтено» – «не зачтено». Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, и на лабораторных занятиях, а также экспресс – опросов и заданий по лекционным материалам и лабораторным работам. Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий и самостоятельной работы оценивается по критериям шкалы оценок - «зачтено» - «не зачтено». Освоение материала дисциплины формирования И достаточно высокая степень контролируемых компетенций обучающегося (своевременные выполнение и защита отчетов по лабораторным работам служат) основанием для допуска обучающегося к этапу промежуточной аттестации - экзамену.

Уровень теоретической подготовки студента определяется составом и степенью формирования приобретенных компетенций, усвоенных теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач целенаправленного применения различных групп материалов в электронной технике.

Аттестация студентов по итогам выполнения курсовой работы проводится согласно составу и степени формирования приобретенных компетенций; умению

на практике применять теоретические знания; правильности и аккуратности выполнения курсовой работы; умению представлять и защищать курсовую работу.

Защита курсовой работы организуется и осуществляется, как правило, в форме презентации. Оцениваются при защите курсовой работы следующие критерии:

- умение использовать приобретенные знания и компетенции при выполнении курсовой работы;
 - правильность выполнения и аккуратность оформления курсовой работы;
 - умение логично и обоснованно выстроить доклад;
 - ответы на дополнительные вопросы, заданные во время защиты.

Применяется четырехбальная шкала оценок: "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", что соответствует шкале "компетенции студента полностью соответствуют требованиям $\Phi \Gamma OC\ BO$ ", "компетенции студента соответствуют требованиям $\Phi \Gamma OC\ BO$ ", "компетенции студента в основном соответствуют требованиям $\Phi \Gamma OC\ BO$ ", "компетенции студента не соответствуют требованиям $\Phi \Gamma OC\ BO$ ".

Целью проведения промежуточной аттестации (экзамена) является проверка общекультурных, общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Материалы электронной техники».

Экзамен организуется и осуществляется, как правило, собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, является утвержденный экзаменационный билет, содержание которого определяется ОПОП настоящей рабочей программой. И Экзаменационный билет включает в себя, как правило, два вопроса, которые относятся к указанным выше теоретическим разделам дисциплины.

Оценке на заключительной стадии экзамена подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора.

Применяются следующие критерии оценивания компетенций (результатов):

- -уровень усвоения материала, предусмотренного программой;
- -умение анализировать материал, устанавливать причинно-следственные связи;
 - полнота, аргументированность, убежденность ответов на вопросы;
- качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

Применяется четырехбальная шкала оценок: "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", что соответствует шкале "компетенции студента полностью соответствуют требованиям ФГОС ВО", "компетенции студента соответствуют требованиям ФГОС ВО", "компетенции

студента в основном соответствуют требованиям ФГОС ВО", "компетенции студента не соответствуют требованиям ФГОС ВО".

5. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, шкал оценивания

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

«Отлично»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

«Хорошо»:

достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов.

«Удовлетворительно»:

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов):

понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Неудовлетворительно»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

При трех вопросах в билете общая оценка выставляется следующим образом: «отлично», если все оценки «отлично» ИЛИ одна ИЗ них «хорошо»; «хорошо», не более одной «удовлетворительно»; если оценки «удовлетворительно», более «удовлетворительно»; если две И оценок «неудовлетворительно», если одна оценка «неудовлетворительно», а остальные не выше чем «удовлетворительно» или две оценки «неудовлетворительно».

6. Критерии оценивания промежуточной аттестации

Таблица 1 - Критерии оценивания промежуточной аттестации			
Шкала оценивания	Критерии оценивания		
«отлично»	студент должен: продемонстрировать глубокое и прочное		
	усвоение знаний материала; исчерпывающе, последовательно,		
	грамотно и логически стройно изложить теоретический		
	материал; правильно формулировать определения; уметь сделать		
	выводы по излагаемому материалу; безупречно ответить не		
	только на вопросы билета, но и на дополнительные вопросы в		
	рамках рабочей программы дисциплины; продемонстрировать		
	умение правильно выполнять практические задания,		
	предусмотренные программой;		
«хорошо»	студент должен: продемонстрировать достаточно полное знание		
	материала; продемонстрировать знание основных теоретических		
	понятий; достаточно последовательно, грамотно и логически		
	стройно излагать материал; уметь сделать достаточно		
	обоснованные выводы по излагаемому материалу; ответить на		
	все вопросы билета; продемонстрировать умение правильно		
	выполнять практические задания, предусмотренные программой,		
	при этом возможно допустить непринципиальные ошибки.		
«удовлетворительно»	студент должен: продемонстрировать общее знание изучаемого		
	материала; знать основную рекомендуемую программой		
	дисциплины учебную литературу; уметь строить ответ в		
	соответствии со структурой излагаемого вопроса; показать общее		
	владение понятийным аппаратом дисциплины; уметь устранить		
	допущенные погрешности в ответе на теоретические вопросы		
	и/или при выполнении практических заданий под руководством		
	преподавателя, либо (при неправильном выполнении		
	практического задания) по указанию преподавателя выполнить		
	другие практические задания того же раздела дисциплины.		
«неудовлетворительно»	ставится в случае: незнания значительной части программного		
	материала; не владения понятийным аппаратом дисциплины;		
	существенных ошибок при изложении учебного материала;		
	неумения строить ответ в соответствии со структурой		
	излагаемого вопроса; неумения делать выводы по излагаемому		
	материалу. Как правило, оценка «неудовлетворительно» ставится		
	студентам, которые не могут продолжить обучение по		
	образовательной программе без дополнительных занятий по		
	соответствующей дисциплине (формирования и развития		
	компетенций, закрепленных за данной дисциплиной). Оценка		
	«неудовлетворительно» выставляется также, если студент после		
	начала экзамена отказался его сдавать или нарушил правила		
	сдачи экзамена (списывал, подсказывал, обманом пытался		
	получить более высокую оценку и т.д.).		

7 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы (для всех видов проводимых занятий или самостоятельных работ необходимо предусмотреть материалы для проверки знаний, умений и владений навыками)

Типовые задания в рамках самостоятельной работы студентов для укрепления теоретических знаний, развития умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- Методы получения нанокластеров, квантовых точек, тонких пленок, квантовых проволок.
- Практическое применение углеродных наносистем.
- Практическое применение фотонных наносистем.
- Практическое применение бионаносистем.
- Практическое применение спинтронных наносистем.

Примеры заданий и контрольных вопросов к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями.

Лабораторная работа № 1

ИЗУЧЕНИЕ ЭФФЕКТА ТУННЕЛИРОВАНИЯ

4. Контрольные вопросы

- 1. Расскажите про туннельный эффект.
- 2. Опишите основные выражения для туннельного тока.
- 3. Расскажите про практическое применение эффекта туннелирования.
- 4. Опишите, что происходит с волновой функцией электрона при его прохождении через туннельно-прозрачный барьер.

Полный перечень **заданий** и **вопросов** к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями, приведен в соответствующих методических указаниях.

- 1. Методы исследования материалов и структур электроники. Методические указания к лабораторным работам / Сост.: В.Г. Литвинов, С.И. Мальченко, Н.Б. Рыбин, А.В. Ермачихин. Рязан. гос. радиотехн. университет.-Рязань. 2012.- 40 с.
- 2. Квантовая Физика. Методические указания к лабораторным работам/ Сост.: В.Г. Литвинов, Н.Б. Рыбин, Н.В. Рыбина, А.В. Ермачихин. Рязан. гос. радиотехн. университет.- Рязань, 2014.- 24 с.
- 3. Зондовые методы исследования материалов и структур электроники. Методические указания к лабораторным работам / Сост.: А.П. Авачев, В.Г.

Литвинов, К.В. Митрофанов, В.Г. Мишустин. Рязан. гос. радиотехн. университет.- Рязань, 2011.- 48 с.

- 4. Методические рекомендации по подготовке студентов к текущему и промежуточному контролю освоения компетенций; сост.: Т.А.Холомина, Е.Н.Евдокимова / Рязан. гос. радиотехн. ун-т.- Рязань, 2016. 16 с.
- 5. Физика наносистем. Методические указания к лабораторным работам/ Сост.: В.Г. Литвинов, Н.Б. Рыбин, Н.В. Рыбина, А.В. Ермачихин, Д.С. Кусакин. Рязан. гос. радиотехн. университет.- Рязань, 2015.- 24 с.
- 6. Физика наносистем. Методические указания к лабораторным работам/ Сост.: В.Г. Литвинов, А.В. Ермачихин, Рязан. гос. радиотехн. университет.-Рязань, 2017.- 32 с.

Список **типовых контрольных вопросов** для оценки уровня сформированности знаний, умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 1. Современное значение физики наносистем. Классификация наносистем.
- 2. Электронные оболочки в атомах, квантовые числа.
- 3. Уравнение Шредингера, водородоподобный атом.
- 4. Атомные кластеры, квантовые точки.
- 5. Нанотрубки, нанопроволоки, системы с пониженной размерностью газа носителей заряда.
- 6. Конденсированное состояние материи. Методы получения атомных кластеров, квантовых точек, проволок, трубок, ям.
 - 7. Гетероструктуры. Физические свойства и эффекты.
 - 8. Многообразие электронных наносистем. Применение.
- 9. Углеродные наноструктуры. Фуллерены, графен, углеродные нанотрубки. Описание физических свойств. Методы получения. Применение.
 - 10. Фотонные, оптические кристаллы. Получение, свойства, применение.
- 11. Наносистемы и квантовая оптика. Принципы работы оптического лазера.
 - 12. Классификация лазеров на основе наносистем.
- 13. Двух-фотонные процессы, стимулированное Рамановское рассеяние и другие оптические эффекты.
 - 14. Бионаносистемы. Классификация, методы получения.
- 15. Использование плазмонных возбуждений нано кластеров для диагностики и лечения заболеваний. Ноноконтейнеры.
- 16. Оптические свойства биотканей и плазмонные резонансы. Кластерызонды. Фотодеструкция клеток.
 - 17. Транспортные явления в наносистемах.
- 18. Спинтронные наносистемы. Получение, свойства, физические принципы работы.
 - 19. Кулоновская блокада. Наносистемы для одноэлектроники.
 - 20. Методы теоретического исследования наносистем. Классификация.
 - 21. Теоретические модели наносистем и их использование.

- 22. Элементарная теория Друде.
- 23. Теория функционала плотности (DFT) как базовый микроскопический метод изучения наносистем.
- 24. Классификация экспериментальных методов исследования наносистем. Сравнение и характеристики.

Типовые тестовые задания для укрепления и проверки теоретических знаний, развития умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

Тест 1

- 1. Главное квантовое число электрона в атоме характеризует:
 - 1. дрейфовую подвижность электрона;
 - 2. энергию электрона;
 - 3. проекцию импульса электрона на заданное направление;
 - 4. собственный механический момент.
- 2. Квантовая точка характеризуется:
 - 1. формой;
 - 2. размерами;
 - 3. структурой;
 - 4. всеми перечисленными параметрами.
- 3. В квантовых проволоках наблюдается:
 - 1. электронный транспорт вдоль квантовой проволоки;
 - 2. электронный транспорт поперек квантовой проволоки;
 - 3. двумерный газ носителей заряда;
 - 4. трехмерный газ носителей заряда.
- 4. К методу(ам) получения структур с квантовыми ямами относятся:
 - 1. метод центрифугирования;
 - 2. метод газофазной эпитаксии;
 - 3. метод магнетронного распыления;
 - 4. все перечисленные методы.
- 5. Полупроводниковой гетероструктурой является:
 - 1. структура с квантовой ямой для носителей заряда;
 - 2. кремниевый р-п-переход;
 - 3. пленочный резистор;
 - 4. МДП-транзистор.
- 6. К углеродным наноструктурам относятся:
 - 1. квантовые точки и проволоки АЗВ5, легированные углеродом;
 - 2. квантовые проволоки А2В6;
 - 3. все перечисленное в пунктах 1 и 2;
 - 4. ничего из перечесленного.
- 7. На основе каких наносистем может быть реализован лазер:
 - 1. на металлических квантовых точках;
 - 2. на полупроводниковых квантовых ямах;
 - 3. на тонких слоях металлов с магнитными свойствами нанометровой толщины;
 - 4. на газовой смеси Не-Ne малой массы и объема.
- 8. Изучение Рамановского рассеяния в наноструктурах позволяет:
 - 1. определить химический состав поверхности наносистемы;
 - 2. определить размеры элементов наносистемы;

- 3. определить кинетические параметры носителей заряда в наносистеме;
- 4. все перечисленные характеристики наносистемы.
- 9. К транспортным эффектам в наносистемах относится:
 - 1. интерференция электронных волн;
 - 2. квазибаллистический транспорт;
 - 3. квантовый эффект Холла;
 - 4. все перечисленные эффекты.
- 10. Особенности рельефа поверхности непроводящих наносистем могут быть детально исследованы:
 - 1. методом сканирующей туннельной микроскопии;
 - 2. методом атомно-силовой микроскопии;
 - 3. методом растровой электронной микроскопии;
 - 4. методом оже-электронной спектроскопии.

Тест 2

- 1. Спиновое квантовое число электрона в атоме характеризует:
 - 1. орбитальную скорость электрона в атоме;
 - 2. энергию электрона;
 - 3. проекцию импульса электрона на заданное направление;
 - 4. собственный механический момент.
- 2. Нанотрубка характеризуется:
 - 1. количеством стенок;
 - 2. диаметром;
 - 3. хиральностью;
 - 4. всеми перечисленными параметрами.
- 3. В полупроводниковых квантовых ямах наблюдается:
 - 1. размерное квантование;
 - 2. эффект туннелирования;
 - 3. нульмерный газ носителей заряда;
 - 4. одномерный газ носителей заряда.
- 4. К методу(ам) получения квантовых точек относятся:
 - 1. золь-гель метод;
 - 2. метод газофазной эпитаксии;
 - 3. метод эпитаксии из молекулярных пучков;
 - 4. все перечисленные методы.
- 5. Полупроводниковой гетероструктурой является:
 - 1. полупроводниковая структура со слоями квантовых точек;
 - 2. германиевый р-п-переход;
 - 3. пленочный конденсатор;
 - 4. диодная структура Шоттки.
- 6. К углеродным наноструктурам относятся:
 - 1. фуллерен;
 - 2. графен;
 - 3. легированная углеродная нанострубка
 - 4. все перечисленное в пунктах 1 3.
- 7. В спинтроных наносистемах наблюдаются эффекты:
 - 1. гигантского магнитосопротивления;
 - 2. спин-зависимое туннелирование;
 - 3. эффект Кондо;
 - 4. ничего из перечисленного.
- 8. Изучение одноэлектронного туннелирования возможно в:

- 1. в однобарьерных наносистемах;
- 2. в двухбарьерных наносистемах;
- 3. в одноэлектронном транзисторе;
- 4. во всех перечисленных наносистемах.
- 9. К транспортным эффектам в наносистемах относится:
 - 5. интерференция электронных волн;
 - 6. квазибаллистический транспорт;
 - 7. квантовый эффект Холла;
 - 8. все перечисленные эффекты.
- 10. Зонная структура полупроводниковых наносистем с квантовыми ямами может быть исследована:
 - 1. методом сканирующей туннельной микроскопии;
 - 2. методом фотолюминесценции;
 - 3. методом спектроскопии адмиттанса;
 - 4. всеми перечисленными методами.

5.

Примеры **контрольных заданий**, выполняемых обучающимися для приобретения и развития знаний и практических умений, предусмотренных компетенциями.

Волновая функция

- 1. Объясните, почему физический смысл имеет не сама ${\it \Psi}$ -функция, а квадрат ее модуля $|\psi|^2$?
- 2. Объясните, почему волновая функция должна быть конечной, однозначной и непрерывной.
- 3. Запишите выражение для вероятности W обнаружения частицы в конечном объеме V , если известна координатная пси-функция частицы $\psi(x,y,z)$.
- **4.** Волновая функция, описывающая некоторую частицу, может быть представлена в виде $\Psi(x,t) = \psi(x) \cdot e^{-\frac{i}{\hbar}Et}$. Покажите, что плотность вероятности нахождения частицы определяется только координатной Ψ -функцией.
- 6. Используя условие нормировки вероятностей, определите нормировочный коэффициент A волновой функции $\psi = Ae^{-r/a}$, описывающей основное состояние электрона в атоме водорода, где r расстояние электрона от ядра, a первый боровский радиус.
- 7. Используя условие нормировки вероятностей, определите нормировочный коэффициент волновой функции $\psi = Ae^{-r^2/(2a^2)}$, описывающей поведение некоторой частицы, где r расстояние частицы от силового центра; a некоторая постоянная.
- 8. Волновая функция $\psi = A \sin(2\pi x/l)$ определена только в области $0 \le x \le l$. Используя условие нормировки, определите нормировочный множитель A.
- 9. Ψ -функция некоторой частицы имеет вид $\psi = \frac{A}{r}e^{-r/a}$, где r расстояние частицы от силового центра; a некоторая постоянная. Определите среднее расстояние частицы до силового центра.

- 10. Волновая функция, описывающая некоторую частицу, имеет вид $\psi = Ae^{-r^2/(2a^2)}$, где r расстояние этой частицы до силового центра; a некоторая постоянная. Определите среднее расстояние частицы до силового центра.
- 11. Волновая функция, описывающая основное состояние электрона в атоме водорода, имеет вид $\psi = Ae^{-r/a}$, где r расстояние электрона от ядра, a первый боровский радиус. Определите среднее значение квадрата расстояния электрона до ядра в основном состоянии.
- 12. Волновая функция, описывающая некоторую частицу, имеет вид $\psi(r) = \frac{A}{r} e^{-r^2/a^2}$, где

A - нормировочный множитель, равный $\frac{1}{\sqrt{\pi a\sqrt{2\pi}}}$; r - расстояние частицы от силового центра; a

- некоторая постоянная. Определите среднее значение квадрата расстояния частицы до силового центра.
- 13. Волновая функция, описывающая основное состояние электрона в атоме водорода, имеет вид $\psi = Ae^{-r/a}$, где r -расстояние электрона от ядра, a первый боровский радиус. Определите наиболее вероятное расстояние электрона до ядра.
- 14. Волновая функция, описывающая некоторую частицу, имеет вид $\psi = Ae^{-r^2/(2a^2)}$, где r расстояние частицы от силового центра; a некоторая постоянная. Определите наиболее вероятное расстояние частицы до силового центра.

Уравнение Шредингера и его применение

- **15.** Запишите уравнение Шредингера для стационарных состояний электрона, находящегося в атоме водорода.
- **16.** Одномерное уравнение Шредингера (для стационарных состояний) для частицы, движущейся под действием квазиупругой силы.
- **17.** Запишите общее уравнение Шредингера для свободной частицы, движущейся вдоль оси x, и решите это уравнение.
- **18.** Исходя из принципа классического детерминизма и причинности в квантовой механике, объясните толкование причинности в классической и квантовой теориях.
- 19. Известно, что свободная квантовая частица описывается плоской монохроматической волной де Бройля. Плотность вероятности (вероятность, отнесенная к единице объема) обнаружения свободной частицы $|\psi|^2 = \psi \psi^* = |A|^2 = const$. Объясните, что означает постоянство этой величины.
- **20.** Запишите уравнение Шредингера для стационарных состояний для свободной частицы, движущейся вдоль оси x, а также определите средством его решения собственные значения энергии. Что можно сказать об энергетическом спектре свободной частицы?

Частица в потенциальной яме

- **21.** Волновая функция, описывающая частицу в момент времени t=0,имеет вид $\Psi(x,0)=Ae^{-x^2/a^2+ikx}$, где a и k некоторые положительные постоянные. Определите: 1) нормировочный коэффициент A; 2) область, в которой частица локализована.
- **22.** Частица находится в одномерной прямоугольной "потенциальной яме" шириной l с бесконечно высокими "стенками". Запишите уравнение Шредингера в пределах "ямы" $(0 \le x \le l)$ и решите его.
- **23.** Частица находится в одномерной "потенциальной яме" шириной l с бесконечно высокими "стенками". Выведите выражение для собственных значений энергии E_n .

- **24.** Волновая функция, описывающая состояние частицы в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками", имеет вид $\psi(x) = A \sin kx$. Определите: 1) вид собственной волновой функции $\psi_n(x)$; 2) коэффициент A, исходя из условия нормировки вероятностей.
- **25.** Известно, что нормированная собственная волновая функция, описывающая состояние электрона в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками", имеет вид $\psi(x) = \sqrt{\frac{2}{l}} \sin \frac{\pi n}{l} x$, где l ширина "ямы". Определите среднее значение координаты x электрона.
- 26. Докажите, что собственные волновые функции, описывающие состояние частицы в одномерной "потенциальной яме" с бесконечно высокими "стенками", являются ортогональными, т. е. удовлетворяют условию: $\int_0^l \psi_n(x) \psi_m(x) dx = 0$, если $n \neq m$. Здесь l -

ширина "ямы"; п и т- целые числа.

- **27.** Частица в одномерной прямоугольной "потенциальной яме" шириной l с бесконечно высокими "стенками" находится в основном состоянии. Определите вероятность обнаружения частицы в левой трети "ямы".
- **28.** Частица в одномерной прямоугольной "потенциальной яме" шириной l с бесконечно высокими "стенками" находится в основном состоянии (n=2). Определите вероятность обнаружения частицы в области $3/8l \le x \le 5/8l$.
- **29.** Электрон находится в одномерной прямоугольной "потенциальной яме" шириной l с бесконечно высокими "стенками". Определите вероятность W обнаружения электрона в средней трети "ямы", если электрон находится в возбужденном состоянии (n=3). Поясните физический смысл полученного результата, изобразив графически плотность вероятности обнаружения электрона в данном состоянии.
- 30. Частица в одномерной прямоугольной "потенциальной яме" шириной l с бесконечно высокими "стенками" находится в возбужденном состоянии (n=3). Определите, в каких точках "ямы" $(0 \le x \le l)$ плотность вероятности обнаружения частицы: 1) максимальна; 2) минимальна. Поясните полученный результат графически.
- **31.** Определите, при какой ширине одномерной прямоугольной "потенциальной ямы" с бесконечно высокими "стенками" дискретность энергетического спектра электрона сравнима с его средней кинетической энергией при температуре T.
- 32. Докажите, что энергия свободных электронов в металле не квантуется. Примите, что ширина l прямоугольной "потенциальной ямы" с бесконечно высокими " стенками" для электрона в металле составляет 10 см.
- 33. Частица находится в одномерной прямоугольной "потенциальной яме" с бесконечно высокими "стенками". Определите, во сколько раз изменяется отношение разности соседних энергетических уровней $\Delta E_{n+1,n}/E_n$ частицы при переходе от n=3 к n=8. Объясните физическую сущность полученного результата.
- **34.** Определить собственную энергию электрона в потенциальном ящике шириной 10Å, если он находится на третьем разрешенном уровне.
- **35.** Определить минимальный энергетический интервал между соседними уровнями для электрона в потенциальном ящике, если ширина ящика l = 10Å.
- **36.** Энергия электрона, находящегося в потенциальном ящике, в основном состоянии равна 5эВ. Определить длину волны де Бройля на втором разрешенном уровне.
- 37. Какова вероятность обнаружения электрона в середине потенциального ящика на основном уровне?
- **38.** Определить вероятность нахождения электрона в потенциальном ящике на расстоянии 1/3l (l ширина ящика), если электрон находится на третьем разрешенном уровне.

39. Определить, на каком уровне в потенциальном ящике находится электрон, если отношение разности энергий вышестоящего уровня (и неизвестного) к неизвестному равно 3/5.

Частицы и потенциальные барьеры

- **40.** Частица с энергией Е движется в положительном направлении оси x и встречает на своем пути прямоугольный потенциальный барьер высотой U и конечной шириной l, причем E < U. Запишите уравнение Шредингера для областей 1, 2 и 3.
- **41.** Для условия предыдущей задачи запишите решения уравнений Шредингера для областей 1, 2 и 3. Ψ -функция обычно нормируется так, что $A_1=1$. Представьте графически качественный вид Ψ -функций.
- **42.** Электрон с энергией E=5 эВ движется в положительном направлении оси x, встречая на своем пути прямоугольный потенциальный барьер высотой U=10 эВ и шириной l=0,1 нм. Определите коэффициент D прозрачности потенциального барьера.
- **43.** Прямоугольный потенциальный барьер имеет ширину l=0,1 нм. Определите в электрон-вольтах разность энергий U E, при которой вероятность прохождения электрона сквозь барьер составит 0,5.
- **44.** Протон с энергией E=5 эВ движется в положительном направлении оси x, встречая на своем пути прямоугольный потенциальный барьер высотой U=10 эВ и шириной l=0,1 нм. Определите вероятность прохождения протоном этого барьера. Во сколько раз надо сузить барьер, чтобы вероятность прохождения его протоном была такой же, как для электрона при выше приведенных условиях.
- **45.** Прямоугольный потенциальный барьер имеет ширину l=0,1 нм. Разность между высотой потенциального барьера и энергией движущегося в положительном направлении оси x электрона U E=5 эВ. Определите, во сколько раз изменится коэффициент прозрачности D потенциального барьера для электрона, если разность U E возрастает в 4 раза.
- **46.** Частица с энергией E движется в положительном направлении оси х и встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U, причем E > U. Запишите уравнение Шредингера для областей 1 и 2.
- **47.** Для условия предыдущей задачи запишите решение уравнений Шредингера для областей 1 и 2. Ψ -функция обычно нормируется так, что A_1 = 1. Представьте графически качественный вид Ψ -функций.
- **48.** Частица с энергией E=10 эВ движется в положительном направлении оси x, встречая на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U=5 эВ. Определите коэффициент преломления n волн де Бройля на границе потенциального барьера.
- **49.** Электрон с длиной волны де Бройля $\lambda = 100$ пм, двигаясь в положительном направлении оси x, встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U = 100 эВ. Определите длину волны де Бройля после прохождения барьера.
- **50.** Частица с энергией E=50 эВ, двигаясь в положительном направлении оси x, встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U==20 эВ. Определите вероятность отражения частицы от этого барьера.
- 51. Частица массой $m=10^{-19}$ кг, двигаясь в положительном направлении оси х со скоростью $\nu=20$ м/с, встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой $U=100\,$ эВ. Определите коэффициент отражения R волн де Бройля на границе потенциального барьера.
- 52. Частица с энергией E движется в положительном направлении оси x и встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U, причем E < U. Запишите уравнение Шредингера для областей 1 и 2.
- **53.** Для условия предыдущей задачи запишите решение уравнений Шредингера для областей 1 и 2. Ψ -функция обычно нормируется так, что A=1. Представьте графически качественный вид Ψ -функций.

- 54. Электрон с длиной волны λ де Бройля, равной 120 пм, движется в положительном направлении оси x и встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U=200 эВ. Определите коэффициент отражения R волн де Бройля на границе потенциального барьера.
- 55. Частица с энергией E движется в положительном направлении оси x и встречает на своем пути бесконечно широкий прямоугольный барьер высотой U, причем E < U. Принимая $A_1 = 1$ (как это обычно делается) и используя условия непрерывности волновой функции и ее первой производной на границе областей 1 и 2, определите плотность вероятности $|\psi_2(0)|^2$ обнаружения частицы в точке x = 0 области 2.
- 56. Частица с энергией E движется в положительном направлении оси x и встречает на своем пути бесконечно широкий прямоугольный потенциальный барьер высотой U, причем E < U. Принимая $A_1 = 1$ (как обычно делается) и используя условия непрерывности волновой функции и ее первой производной на границе областей 1 и 2, определите плотность вероятности обнаружения частицы на расстоянии x от потенциального барьера.
- **57.** Определить длину волны де Бройля для электрона, прошедшего над потенциальным барьером, если коэффициент преломления равен 1/3, а высота барьера 9 эВ.
- **58.** Определить показатель преломления волн де Бройля для электронов, если коэффициент отражения их от барьера равен 0,25.
- **59.** Определить, какой энергией должен обладать электрон для прохождения через барьер прямоугольной формы толщиной 10Å и высотой 9 эВ, если коэффициент прозрачности равен 0.5.
- **60.** Электрон с энергией 49 эВ набегает на потенциальный барьер высотой 24 эВ. Определить показатель преломления волн де Бройля.
- **61.** Определить коэффициент прозрачности барьера для электрона, прошедшего ускоряющую разность потенциалов 51 B, если высота барьера 76 эВ и его ширина 2Å. Барьер прямоугольной формы.
- **62.** Определить разность энергии электрона и высоты потенциального барьера, если его вероятность нахождения на расстоянии 1 Å от границы барьера равна 0,3.
- **63.** Определить энергию электрона, набегающего на потенциальный барьер высотой 9 эВ, если коэффициент преломления волн де Бройля 4/5.
- **64.** Построить график зависимости коэффициента прозрачности прямоугольного барьера высотой 25 эВ от его ширины для электронов с энергией 20 эВ.
- **65.** Построить график зависимости коэффициента прозрачности прямоугольного потенциального барьера шириной 8 Å от разности U E для E < U, где U высота потенциального барьера.

Линейный гармонический осциллятор

- **66.** Докажите, что волновая функция $\psi(x) = Axe^{\frac{\sqrt{mk}}{2\hbar}x^2}$ может быть решением уравнения Шредингера для гармонического осциллятора, масса которого m и постоянная квазиупругой силы k. Определите собственное значение полной энергии осциллятора.
- 67. Частица массой m движется в одномерном потенциальном поле $U(x) = kx^2/2$ (гармонический осциллятор). Волновая функция, описывающая поведение частицы в основном состоянии, имеет вид $\psi(x) = Ae^{-ax^2}$, где A нормировочный коэффициент; a положительная постоянная. Используя уравнение Шредингера, определите: 1) постоянную a; 2) энергию частицы в этом состоянии.
- **68.** Объясните физический смысл существования энергии нулевых колебаний для квантового гармонического осциллятора. Зависит ли наличие нулевых колебаний от формы "потенциальной ямы"?

- **69.** Математический маятник можно рассматривать в качестве гармонического осциллятора. Определите в электрон-вольтах энергию нулевых колебаний для маятника длиной $l==1\,\mathrm{m}$, находящегося в поле тяготения Земли.
- **70.** Рассматривая математический маятник массой m=100 г и длиной l=0.5 м в виде гармонического осциллятора, определите классическую амплитуду A маятника, соответствующую энергии нулевых колебаний этого маятника.

Оценочные материалы входят в состав рабочей программы дисциплины «Физика наносистем» (Б1.В.03), направление подготовки — 11.03.04 «Электроника и наноэлектроника», ОПОП «Микро- и наноэлектроника».

Составил

к.ф.-м.н., доцент кафедры микро- и наноэлектроники

Литвинов В.Г.

Зав. кафедрой микро- и наноэлектроники д.ф.-м.н., доцент

Литвинов В.Г.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Литвинов Владимир Георгиевич, Заведующий кафедрой МНЭЛ

18.07.25 17:21 (MSK)

Простая подпись