МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА"

КАФЕДРА «ЭЛЕКТРОННЫЕ ПРИБОРЫ»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

дисциплины

«ЛАЗЕРНЫЕ И ВОЛОКОННО-ОПТИЧЕСКИЕ УСТРОЙСТВА»

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача – обеспечить оценку уровня сформированности компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (отлично, хорошо, удовлетворительно, неудовлетворительно).

1. Паспорт фонда оценочных средств по дисциплине

№ п/ п	№ разде ла	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контроли- руемой компетен- ции (или её части)	Этап формирования контролируемой компетенции (или её части)	Наименование оценочного средства
1	1	Оптические резонаторы и методы их расчета	ПК-2.1, ПК-2.2, ПК-4.1, ПК-4.2	Лекционные и практические занятия обучающихся в течение учебного семестра	Ответы на тестовые задания, отчеты по лабораторным работам с периодичностью 1 раз в две недели, экзамен
2	2	Лазерные диоды	ПК-2.1, ПК-2.2, ПК-4.1, ПК-4.2	Лекционные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, ответы на тестовые задания, отчеты по лабораторным работам с периодичностью 1 раз в две недели, экзамен
3	3	Распространение оптического излучения в волокне. Типы и характеристики оптических волокон	ПК-2.1, ПК-2.2, ПК-4.1, ПК-4.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, ответы на тестовые задания, отчеты по лабораторным работам с периодичностью 1 раз в две недели, экзамен
4	4	Компоненты волоконно- оптических устройств	ПК-2.1, ПК-2.2, ПК-4.1, ПК-4.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, ответы на тестовые задания, отчеты по лабораторным работам с периодичностью 1 раз в две недели,

					экзамен
5	5	Волоконно-оптические	ПК-2.1,	Лекционные и	Аналитический отчет
		датчики	ПК-2.2,	практические занятия	по самостоятельной
			ПК-4.1,	обучающихся в течение	работе, результаты решения задач,
			ПК-4.2	учебного семестра	ответы на тестовые
					задания
6	6	Лазерные методы	ПК-2.1,	Лекционные и	Аналитический отчет
		исследования	ПК-2.2,	самостоятельные	по самостоятельной
		окружающей среды,	ПК-4.1,	занятия обучающихся в	работе, результаты
		измерения расстояний и	ПК-4.2	течение учебного	решения задач, ответы на тестовые
		скоростей		семестра	задания
7	7	Оптическая гироскопия	ПК-2.1,	Лекционные и	Аналитический отчет
'	,	Common composition	ПК-2.2,	практические занятия	по самостоятельной
			ПК-4.1,	обучающихся в течение	работе, результаты
			ПК-4.2	учебного семестра	решения задач,
			11IX- 4 .2	учестого семестра	ответы на тестовые
8	8	Подолучи в може жи дожимом и	ПИ 2.1	Помумомуми	задания Аналитический отчет
0	0	Лазерные методы записи и	ПК-2.1,	Лекционные и	по самостоятельной
		воспроизведения	ПК-2.2,	самостоятельные	работе, результаты
		информации	ПК-4.1,	занятия обучающихся в	решения задач,
			ПК-4.2	течение учебного	ответы на тестовые
				семестра	задания

2 Формы текущего контроля

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях, по результатам выполнения обучающимися индивидуальных заданий, проверки качества конспектов лекций и иных материалов.

Текущий контроль по дисциплине «Лазерные и волоконно-оптические устройства» проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно на практических и лабораторных занятиях, а также экспресс — опросов и заданий по лекционным материалам и лабораторным работам. Учебные пособия, рекомендуемые для самостоятельной работы и подготовки к лабораторным и практическим занятиям обучающихся по дисциплине «Лазерные и волоконно-оптические устройства», содержат необходимый теоретический материал в краткой форме и тестовые задания с возможными вариантами ответов по каждому из разделов дисциплины. Ответы на вопросы тестовых заданий контролируются преподавателем.

3 Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является экзамен. К экзамену допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения экзамена – устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

4 Критерии оценки компетенций обучающихся и шкалы оценивания

Оценка степени формирования указанных выше контролируемых компетенций у обучающихся на различных этапах их формирования проводится преподавателем во время

лекций, консультаций и лабораторных занятий по шкале оценок «зачтено» — «не зачтено». Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно и на лабораторных занятиях, а также экспресс — опросов и заданий по лекционным материалам и лабораторным работам. Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий и самостоятельной работы оценивается по критериям шкалы оценок - «зачтено» — «не зачтено». Освоение материала дисциплины и достаточно высокая степень формирования контролируемых компетенций обучающегося (эффективное и своевременное выполнение всех видов учебной работы, предусмотренных учебным планом и настоящей программой) служат основанием для допуска обучающегося к этапу промежуточной аттестации - экзамену.

Целью проведения промежуточной аттестации (экзамена) является проверка общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Лазерные и волоконно-оптические устройства».

Уровень теоретической подготовки студента определяется составом и степенью формирования приобретенных компетенций, усвоенных теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач целенаправленного применения различных групп материалов в электронной технике.

Экзамен организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, является утвержденный экзаменационный билет, содержание которого определяется ОПОП и рабочей программой предмета. Экзаменационный билет включает в себя, как правило, два вопроса относящихся к теоретическим разделам дисциплины.

Оценке на заключительной стадии экзамена подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора.

Применяются следующие критерии оценивания компетенций (результатов):

- -уровень усвоения материала, предусмотренного программой;
- -умение анализировать материал, устанавливать причинно-следственные связи;
- полнота, аргументированность, убежденность ответов на вопросы;
- -качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- -использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

Применяется четырехбальная шкала оценок: "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", что соответствует шкале "компетенции студента полностью соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента в основном соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента не соответствуют требованиям $\Phi \Gamma OC$ BO".

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

«Отлично»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

«Хорошо»:

достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов.

«Удовлетворительно»:

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов):

понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Неудовлетворительно»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

При двух вопросах в билете общая оценка выставляется следующим образом: «отлично», если все оценки «отлично» или одна из них «хорошо»; «хорошо», если не более одной оценки «удовлетворительно»; «удовлетворительно», если две оценки «удовлетворительно»; «неудовлетворительно», если одна оценка «неудовлетворительно», а вторая не выше чем «удовлетворительно» или две оценки «неудовлетворительно».

5 Типовые контрольные вопросы по дисциплине «Лазерные и волоконно-оптические устройства»

- 1. Открытые оптические резонаторы и их функциональное назначение в лазерах. Добротность резонатора, основные причины потерь. Типы и классификация открытых резонаторов, условие и диаграмма их устойчивости.
- 2. Продольные и поперечные виды колебаний (моды) открытых резонаторов. Спектр собственных частот оптического резонатора. Методы селекции поперечных и продольных мод.
- 3. Гауссовы пучки, комплексный параметр гауссова пучка и законы его преобразования в свободном пространстве и в линзе.
- 4. Расчет гауссова пучка в устойчивом резонаторе. Связь параметров гауссова пучка с геометрией резонатора.
- 5. Принцип построения инжекционного лазера на базе p-n перехода в полупроводниках с прямой структурой энергетических зон. Особенности оптического пучка, формируемого в лазерных диодах.
- 6. Особенности активной среды и преимущества лазеров на гетероструктурах. Конструкции лазерных диодов на двойных гетероструктурах; структуры с направленным усилением и с вертикальным резонатором. Формирование оптического пучка в промышленно выпускаемых лазерных диодах. Устройство и конструкции лазерных модулей.
- 7. Полное внутреннее отражение как механизм распространения излучения в оптическом волокне. Числовая апертура волоконного световода.
- 8. Моды волоконного световода. Одномодовые и многомодовые оптические волокна.
- 9. Спектр потерь в прямолинейном волокне. Окна прозрачности. Рэлеевское рассеяние.
- 10. Количественные характеристики затухания излучения в оптическом волокне. Факторы, приводящие к затуханию.
- 11. Изготовление заготовок для вытяжки оптических волокон: метод химического парофазного осаждения. Вытяжка волокна из заготовки.
- 12. Уширение импульса при распространении в оптическом волокне. Зависимость запаздывания импульса от длины волны. Коэффициент дисперсии.
- 13. Материальная и волноводная дисперсия в одномодовом волокне.
- 14. Уширение импульсов в волокне при наличии двойного лучепреломления. Поляризационная модовая дисперсия. Уширение передаваемых импульсов из-за поляризационной модовой дисперсии.
- 15. Межмодовая дисперсия в многомодовом оптическом волокне. Полоса передаваемых частот при ступенчатом профиле показателя преломления.
- 16. Градиентное волокно. Полоса передаваемых частот при параболическом профиле показателя преломления внутри сердцевины волокна.

- 17. Нормированная частота волокна и длина волны отсечки. Условие реализации одномодового режима при распространении в волокне оптического излучения. Эффективная длина волны отсечки и ее измерение.
- 18. Механизмы увеличения потерь при изгибах оптического волокна.
- 19. Причины потерь в соединениях оптических волокон.
- 20. Дисперсионное ограничение скорости передачи данных и расстояния между ретрансляторами в волоконно-оптической линии связи. Оптимальная длительность импульса излучения на входе волокна.
- 21. Волоконно-оптические усилители и их преимущества при использовании в линиях связи с мультиплексированием по длинам волн.
- 22. Компенсация дисперсии в волоконно-оптических линиях связи. DC-волокна.
- 23. Оптические волокна с ненулевой смещенной дисперсией (NZDS-волокна).
- 24. Связь между волноводами за счет оптического туннелирования; волоконно-оптические разветвители.
- 25. Волоконно-оптические изоляторы на основе эффекта Фарадея (вращение плоскости поляризации в магнитном поле).
- 26. Оптические фильтры: интерферометры Фабри-Перо и Маха-Цандера.
- 27. Оптические фильтры: волоконно-оптические решетка Брэгга.
- 28. Мультиплексирование по длине волны. Оптический демультиплексор на массиве волноводов.
- 29. Нелинейные эффекты в оптических волокнах и их влияние на распространение сигналов: вынужденное рассеяние Мандельштамма-Бриллюена, вынужденное комбинационное рассеяние, фазовая самомодуляция, четырехволновое смешение. Солитоны в оптических волокнах.
- 30. Фоторезистивные приемники лазерного излучения и их характеристики. Свойства фотодиодов. PIN фотодиод и лавинный фотодиод, их конструкции и характеристики.
- 31. Принцип измерения расстояний и перемещений с помощью интерферометра Майкельсона.
- 32. Лазерный интерферометр Майкельсона с квадратурным счетом полос как прецизионный датчик перемещений.
- 33. Лазерный интерферометр со счетом полос на основе частотной модуляции из-за эффекта Доплера как прецизионный датчик линейных скоростей и перемещений.
- 34. Принципы записи информации на оптическом диске. Компакт-диски (CD), DVD и BD как носители информации. Структура компакт-диска и этапы его изготовления. Считывание информации с поверхности компакт-диска.
- 35. Эффект Саньяка и его применение для регистрации вращения.
- 36. Устройство волоконно-оптического гироскопа и его применение для измерения угловой скорости вращения. Источники паразитных сигналов, шумов и порог чувствительности современных волоконно-оптических гироскопов.
- 37. Метод несимметричной фазовой модуляции встречных волн в волоконно-оптическом гироскопе.
- 38. Особенности эффекта Саньяка в кольцевых лазерах. Требования к лазерам для оптической гироскопии.
- 39. Особенности эффекта Саньяка в кольцевом лазере. Устройство лазерного гироскопа и принцип регистрации угловых перемещений.
- 40. Формирование квадратурных сигналов в лазерном гироскопе. Регистрация угловой скорости при равномерном вращении лазерного гироскопа. Обратное рассеяние лазерного излучения в кольцевом резонаторе и его влияние на фазу Саньяка и квадратурные информационные сигналы лазерного гироскопа.
- 41. Частотные характеристики лазерного гироскопа. Использование вибрационной частотной подставки при регистрации вращательного движения. Статический и динамический пороги захвата.
- 42. Лазерные гироскопы с магнитооптическим управлением.

- 43. Волоконно-оптические датчики: принципы функционирования, миниатюризация, разработка интегральных датчиков. Волоконно-оптические интерферометры. Датчики на основе изменения интенсивности, поляризации и сдвига частоты света.
- 44. Дифракционный предел разрешения оптических систем по плоскости. Критерий Рэлея и его преодоление в области ближнего поля. Волоконно-оптические ближнепольные зонды и технологии их изготовления. Блок-схема оптического ближнепольного микроскопа. Технические проблемы и области применения ближнепольной микроскопии.
- 45. Принципы построения лазерных дальномеров. Импульсные лазерные дальномеры. Твердотельный Nd: YAG лазер с диодной накачкой (квантрон); продольная и поперечная накачка активной среды в квантронах.
- 46. Работа Nd: YAG лазера в режиме модуляции добротности (генерация «гигантского» импульса). Типы оптических затворов. Использование электрооптических и акустооптических затворов для модуляции добротности.
- 47. Оптическая схема лазерного дальномера, требования к приемному каналу. Лазерные прицелы-дальномеры. Лазерная локация, лидары.
- 48. Лазерное сканирование поверхности (лазерные сканеры). Лазерно-лучевые системы телеориентации.
- 49. Фазовые лазерные дальномеры на основе модуляции мощности изучения лазерных диодов.
- 50. Лазерные доплеровские измерители скорости на основе лазеров на углекислом газе. Требования к характеристикам лазера для ЛДИС. Схемы построения ЛДИС с опорным пучком и с рассеянием назад.
- 51. Физические явления при распространении лазерного излучения в атмосфере. Коэффициент экстинкции и его составляющие: истинное поглощение, рассеяние Рэлея, рассеяние Ми, комбинационное рассеяние (эффект Рамана).
- 52. Основные компоненты лазерной системы дистанционного мониторинга окружающей среды. Сравнительная характеристика возможностей различных методов регистрации загрязнений: оптическая локация, комбинационное рассеяние, резонансная флюоресценция, поглощение с однократным прохождением и с отражением от местных объектов, дифференциальный метод.

6 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

В качестве методических материалов, определяющих процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций у обучающихся, используются перечни контрольных вопросов, приведенных в методических указаниях к лабораторным и самостоятельным занятиям по дисциплине «Лазерные и волоконно-оптические устройства», приведенные в п.6.4 критерии оценки компетенций обучающихся и оценочные средства (п.6.1).

Кроме того, в лаборатории, где проводятся лабораторные работы на первом занятии студентам подробно излагаются и в дальнейшем рекомендуются для постоянного применения специальные методические материалы, регламентирующие порядок проведения лабораторных работ, оформления и защиты отчетов, порядок и критерии оценки письменных и устных отчетов обучающихся по дисциплине (или ее части). К выполнению лабораторной работы не допускаются студенты, не оформившие отчеты по лабораторным работам или не защитившие отчетов по двум работам.

Методические требования к оформлению отчетов по лабораторным работам

Отчет по лабораторной работе должен содержать следующие элементы:

- номер, название и цель работы;
- чертеж функциональной схемы установки, выполненный карандашом по линейке с соблюдением требований ЕСКД;
- основные расчетные соотношения;
- таблицы результатов экспериментов, выполненные карандашом по линейке;

- графики экспериментальных зависимостей, полученных при выполнении лабораторной работы;
- выводы и анализ полученных экспериментальных зависимостей.

При выполнении лабораторной работы каждому студенту необходимо иметь полностью оформленный отчет по ранее выполненной работе и отчет по выполняемой работе, содержащий все перечисленные элементы (за исключением экспериментальных данных в таблице, графиков, выводов).

Методические требования к структуре аналитического отчета по самостоятельной работе:

- 1) титульный лист;
- 2) часть I «Аналитическая часть» анализ раздела индивидуального задания по дисциплине, формулировка актуальности темы, цели и задач разработки или исследования объекта и предмета разработки или исследования, оценка современного состояния изучаемой проблемы;
- 3) часть II «Основная часть» результаты выполнения основной части раздела индивидуального задания по дисциплине (обзор научно-методических информационных источников современных научных статей и монографий по теме, выявление вопросов, требующих углубленного изучения; формирование и обоснование собственной точки зрения на рассматриваемые проблемы и возможные пути их разрешения; необходимые расчеты, моделирование и другие задания, предусмотренные темой самостоятельной работы. Материал не должен иметь только компилятивный характер, но обладать новизной, практической значимостью, отражать точку зрения автора на изучаемые проблемы и результаты проделанной работы.
- 4) часть III «Заключение» заключение и выводы по результатам выполненной работы;
 - 5) список использованных научных и научно-методических источников;
 - 6) приложения (при необходимости).

Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий (после каждой лабораторной работы) и самостоятельной работы (на консультациях) оценивается по критериям шкалы оценок - «зачтено» – «не зачтено».

Оценки "зачтено" заслуживает обучающийся, обнаруживший знания основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, знакомый с основной литературой, рекомендованной программой, справляющийся с выполнением графика и содержания заданий, предусмотренных учебным планом и настоящей программой.

Оценка "не зачтено" выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебного материала, допустившему принципиальные ошибки в выполнении заданий, предусмотренных учебным планом и настоящей программой.

1 Перечень компетенций с указанием этапов их формирования

В соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки бакалавров 11.03.04 «Электроника и наноэлектроника» при освоении дисциплины «Лазерные и волоконно-оптические устройства» формируются следующие компетенции: ПК-2.1, ПК-2.2, ПК-4.1, ПК-4.2..

Указанные компетенции формируются в соответствии со следующими этапами:

- 1) формирование и развитие теоретических знаний, предусмотренных указанными компетенциями (лекционные и лабораторные занятия, самостоятельная работа студентов);
- 2) приобретение и развитие практических умений, предусмотренных компетенциями (лабораторные работы, самостоятельная работа студентов);

3) закрепление теоретических знаний, умений и практических навыков, предусмотренных компетенциями, в ходе выполнения конкретных заданий на лабораторных работах и их защитах, ответов на тестовые задания (текущий контроль), а также в процессе подготовки и сдачи отчетов по самостоятельной работе и экзамена (промежуточный контроль).

2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

При достаточном качестве освоения более 80% приведенных знаний, умений и навыков преподаватель оценивает освоение данной компетенции в рамках настоящей дисциплины на эталонном уровне, при освоении более 60% приведенных знаний, умений и навыков — на продвинутом, при освоении более 40% приведенных знаний умений и навыков — на пороговом уровне. При освоении менее 40% приведенных знаний, умений и навыков компетенция в рамках настоящей дисциплины считается неосвоенной.

Уровень сформированности каждой компетенции на различных этапах ее формирования в процессе освоения данной дисциплины оценивается в ходе текущего контроля успеваемости и представлено различными видами оценочных средств.

Оценке сформированности в рамках данной дисциплины подлежат перечисленные ниже компетенции:

- ПК-2.1 Способность анализировать научные данные, результаты экспериментов и наблюдений.
- ПК-2.2 Способность систематизировать и обобщать результаты исследований приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, представлять материалы в виде научных отчетов, публикаций, презентаций.
- ПК-4.1 Способность разрабатывать функциональные и структурные схемы микроволновых, оптотехнических, оптических и оптико-электронных приборов и комплексов.
- ПК-4.2 Способность проводить расчет параметров микроволновых, оптических и оптико-электронных приборов на основе знаний о их физическом принципе действия.

Критерии оценивания уровня сформированности компетенций ПК-2.1, ПК-2.2, ПК-4.1, ПК-4.2 в процессе выполнения и защиты отчетов по самостоятельной и лабораторным работам:

- 41%-60% правильных ответов соответствует пороговому уровню сформированности компетенции на данном этапе ее формирования;
- 61%-80% правильных ответов соответствует продвинутому уровню сформированности компетенции на данном этапе ее формирования;
- 81%-100% правильных ответов соответствует эталонному уровню сформированности компетенции на данном этапе ее формирования.

Сформированность уровня компетенций не ниже порогового является основанием для допуска обучающегося к промежуточной аттестации по данной дисциплине.

Формой промежуточной аттестации по данной дисциплине является экзамен, оцениваемый по принятой в $\Phi\Gamma$ БОУ ВО «РГРТУ» четырехбалльной системе: «неудовлетворительно», «удовлетворительно», «хорошо» и «отлично».

Критерии оценивания промежуточной аттестации представлены в таблице 1.

Шкала оценивания	Критерии оценивания		
«отлично»	студент должен: продемонстрировать глубокое и прочное		
	усвоение знаний материала; исчерпывающе, последовательно,		
	грамотно и логически стройно изложить теоретический		
	материал; правильно формулировать определения; уметь сделать		
	выводы по излагаемому материалу; безупречно ответить не		
	только на вопросы билета, но и на дополнительные вопросы в		
	рамках рабочей программы дисциплины; продемонстрировать		
	умение правильно выполнять практические задания,		
	предусмотренные программой.		
«хорошо»	студент должен: продемонстрировать достаточно полное знание		
F 5 = 5	материала; продемонстрировать знание основных теоретических		
	понятий; достаточно последовательно, грамотно и логически		
	стройно излагать материал; уметь сделать достаточно		
	обоснованные выводы по излагаемому материалу; ответить на		
	все вопросы билета; продемонстрировать умение правильно		
	выполнять практические задания, предусмотренные программой,		
	при этом возможно допустить непринципиальные ошибки.		
	· · · · · · · · · · · · · · · · · · ·		
«удовлетворительно»	студент должен: продемонстрировать общее знание изучаемого		
	материала; знать основную рекомендуемую программой		
	дисциплины учебную литературу; уметь строить ответ в		
	соответствии со структурой излагаемого вопроса; показать общее		
	владение понятийным аппаратом дисциплины; уметь устранить		
	допущенные погрешности в ответе на теоретические вопросы		
	и/или при выполнении практических заданий под руководством		
	преподавателя, либо (при неправильном выполнении		
	практического задания) по указанию преподавателя выполнить		
	другие практические задания того же раздела дисциплины.		
неудовлетворительно»	ставится в случае: незнания значительной части программного		
	материала; не владения понятийным аппаратом дисциплины;		
	существенных ошибок при изложении учебного материала;		
	неумения строить ответ в соответствии со структурой		
	излагаемого вопроса; неумения делать выводы по излагаемому		
	материалу. Как правило, оценка «неудовлетворительно» ставится		
	студентам, которые не могут продолжить обучение по		
	образовательной программе без дополнительных занятий по		
	соответствующей дисциплине (формирования и развития		
	компетенций, закрепленных за данной дисциплиной). Оценка		
	«неудовлетворительно» выставляется также, если студент после		
	начала экзамена отказался его сдавать или нарушил правила		
	сдачи экзамена (списывал, подсказывал, обманом пытался		
	получить более высокую оценку и т.д.).		

3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Типовые задания в рамках самостоятельной работы студентов для укрепления теоретических знаний, развития умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- Системы формирования и фокусировки оптических гауссовых пучков.
- Проектирование оптических резонаторов.

- Законы преобразования гауссовых пучков.
- Расчет поперечных мод оптических резонаторов на ЭВМ.
- Расчет частотной характеристики лазерного гироскопа на ЭВМ.
- Проектирование интерферометра Майкельсона для прецизионных измерений линейных перемещений.
- Упрощенные физические модели волоконно-оптических гироскопов.
- Проектирование оптических систем лидаров.
- Проектирование лазерных допплеровских измерителей скорости.
- Анализ влияния дисперсии оптического волокна на уширение передаваемых импульсов излучения.

Примеры заданий и контрольных вопросов к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями.

ЛАБОРАТОРНАЯ РАБОТА № 1 АНАЛИЗ МОДОВОЙ СТРУКТУРЫ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ И ИЗМЕРЕНИЕ ЧИСЛОВОЙ АПЕРТУРЫ ВОЛОКОННЫХ СВЕТОВОДОВ

Цели работы:

- исследовать связь между поперечным распределением интенсивности волны, выходящей из многомодового световода, и когерентностью излучения, распространяющегося в оптическом волокне;
 - выявить причину появления модовых шумов в волоконно-оптической линии связи;
 - экспериментально измерить числовую апертуру световода.

Порядок выполнения работы

- 1. Включить блок питания излучателя БПИ, монитора М и телекамеры ТК (рис. 1). После прогрева монитора его экран начнет слабо светиться. Лазерный диод ЛД расположить в юстировочном устройстве ЮУ1 (рис. 6). С помощью потенциометра на лицевой панели БПИ установить значение выходного тока $I_{\rm H} = 15$ мА, являющегося в данном случае током накачки лазерного диода. Отсчет тока накачки осуществляется по цифровому индикатору на лицевой панели.
- 2. Выходной торец световода расположен напротив телекамеры. Оба элемента закреплены во втором юстировочном устройстве ЮУ2 (рис. 6). Изменяя угловое положение торца световода относительно телекамеры с помощью микрометрических винтов УВ2 и УГ2 и перемещая телекамеру в двух поперечных направлениях с помощью микрометрических винтов ЛПП2 и ЛВ2, добиться появления изображения торца световода на экране монитора.
- 3. Добиться, чтобы излучение лазерного диода попадало на входной торец волоконного световода, который расположен в этом же юстировочном устройстве (в узле, осуществляющем линейное перемещение). Изменяя угловое положение ЛД относительно торца световода с помощью микрометрических винтов УВ1 и УГ1 и перемещая оправку со входным торцом световода в двух поперечных направлениях относительно ЛД с помощью микрометрических винтов ЛПП2 и ЛВ2, добиться появления на выходном торце световода светового пятна, которое наблюдается на экране монитора. Регулировку положения источника и входного торца световода производить методом последовательных приближений, добиваясь максимальной яркости наблюдаемого пятна.
- 4. В юстировочном устройстве ЮУ2 предусмотрена возможность продольного перемещения телекамеры относительно торца световода с помощью микрометрического винта ЛПР2. При этом изменяется размер пятна на экране монитора. Перемещая телекамеру в продольном направлении с помощью микрометрического винта ЛПР2, приближая ее к выходному торцу световода, следует добиться четкого изображения светящегося торца световода на экране монитора. Изображение должно занимать приблизительно половину экрана монитора. Изменяя угловое положение торца световода относительно телекамеры и перемещая

телекамеру по двум поперечным направлениям с помощью микрометрических винтов, необходимо добиться, чтобы изображение светящегося пятна находилось в центре экрана монитора и имело форму круга.

- 5. При правильном выполнении всех юстировочных операций на экране монитора наблюдается распределение интенсивности излучения, падающего на поверхность ПЗС-матрицы телекамеры. Если яркость изображения чрезмерно высока, что затрудняет наблюдение деталей изображения, следует уменьшить долю мощности источника излучения, которая вводится в световод. Этого можно добиться двумя способами:
- сместить входной торец световода относительно ЛД. Смещение может производиться как с помощью микрометрических винтов УВ1, УГ1 (по углу ввода излучения в световод), так и с помощью микрометрических винтов ЛПП1, ЛВ1 (линейное смещение торца световода относительно источника);
- повернуть поляризатор вокруг оси так, чтобы оптическая мощность, вводимая в световод, была приемлема для проведения измерений.

Используя эти возможности, добиться появления на экране монитора спекловой структуры.

- 6. После выполнения всех юстировочных операций, не меняя пределов изменения тока накачки, уменьшить ток до нуля, установив ручку потенциометра на лицевой панели БПИ в крайнее положение против часовой стрелки. При этом светящееся пятно на экране монитора исчезнет.
- 7. Плавно увеличивать ток накачки с помощью потенциометра и следить за возникающим светящимся пятном на экране монитора. При токе накачки $I_{\rm H}$ меньше порога лазерной генерации на экране монитора должно наблюдаться светящееся пятно с равномерной засветкой. Картина стабильна, что свидетельствует об отсутствии интерференции между различными модами световода.
- 8. Дальнейшее увеличение тока накачки должно привести к появлению на экране монитора спекловой структуры в пределах засвеченной световодом области должны наблюдаться отдельные мелкие светлые пятна, ограниченные темными областями.
- 9. Зафиксировать значение тока накачки I_0 , которое соответствует появлению спекловой структуры излучения из торца световода.
- 10. Установить значение тока накачки лазерного диода $I_{\rm H}=15\,$ мА. С помощью микрометрического винта ЛПР2 переместить телекамеру в положение, при котором святящееся пятно, наблюдаемое на мониторе, займет примерно половину его экрана.
- 11. Используя органы управления режимом развертки осциллографа, добиться появления на его экране осциллограммы, соответствующей рис. 8,б. Зарисовать осциллограмму, соответствующую поперечному распределению интенсивности излучения. Зафиксировать положение переключателя, ступенчато регулирующего длительность развертки (дел/мкс) R и расстояние между строчными импульсами Т. Данные измерений занести в таблицу 1.
- 12. Попытаться уменьшить размер пятна на экране монитора и импульса на осциллограмме, изменяя угловое положение торца световода относительно телекамеры с помощью микрометрических винтов УВ2 и УГ2. Этим обеспечивается коррекция параллельности фокальной плоскости объектива и плоскости, в которой расположен торец световода. После этого скорректировать положение выделяемой строки, повторив действия, описанные в пункте 12.
- 13. Попытаться уменьшить размер пятна, перемещая в поперечных направлениях телекамеру относительно торца световода с помощью микрометрических винтов ЛПП2 и ЛВ2. Этим обеспечивается коррекция положения торца световода относительно оптической оси OO' (см. рис. 8). После этого скорректировать положение выделяемой строки, повторив действия, описанные в пункте 12. Отметить окончательное положение переключателя, ступенчато регулирующего длительность развертки (дел/мкс) R_0 и соответствующую ширину наблюдаемого на осциллограмме импульса t_0 . Данные измерений занести в табл. 1.

t _i , дел	t_0	t_1	t_n
R _i ,	R_0	R_1	R_n
К _і , дел/мкс			
F _i , MM	F_0	F_1	F_n
d _i , mm	d_0	d_1	d_n
NA		NA_1	NA_n

- 14. По шкале на микрометрическом винте ЛПР2 отметить значение расстояния $F=F_0$ (в дальнейшем используется для расчетов только величины изменения этого расстояния относительно исходного F_0 , поэтому его истинное значение может не совпадать с измеренным). Данные измерений занести в табл.1.
- 15. Повторить измерения, предусмотренные пунктами 12-15, для расстояний $F = F_{1,2...n}$. При этом все отсчеты $F_{1,2...n} < F_0$. Число измерений п указывается преподавателем. Данные измерений занести в табл. 1.
- 16. По данным таблицы определить размеры светящегося пятна по формуле (1) и построить график зависимости d(F). Используя построенную зависимость и соотношение (2), вычислить значение числовой апертуры NA.
- 17. Плавно уменьшить ток накачки до нуля. Выключить БПИ, после чего заменить в узле юстировочного устройства ЮУ1 лазерный диод ЛД на светодиод, подключив последний к БПИ
- 18. Установить выходной ток БПИ, равный 15 мА, и повторить пп. 2-6. Затем, плавно увеличивая ток накачки до 25 мА, убедиться, что спекловая структура на экране монитора в данном случае не появляется. Зарисовать осциллограмму для поперечного распределения интенсивности излучения.
- 19. Установить значение выходного тока БПИ, равное 15 мА. С помощью микрометрического винта ЛПР2 переместить телекамеру в положение, при котором святящееся пятно, наблюдаемое на мониторе, займет примерно половину экрана.
- 20. Используя органы управления режимом развертки осциллографа, добиться появления на его экране осциллограммы, соответствующей рис. 8,в. Отметить положение переключателя, ступенчато регулирующего длительность развертки (дел/мкс) R и расстояние между строчными импульсами Т. Данные измерений занести в заголовок табл.2, аналогичной табл.1.
- 21. Повторить измерения и расчеты, предусмотренные в пп. 15 17, в случае использования в качестве источника излучения СИД и занести результаты в табл.2.
- 22. Сравнить найденные значения числовой апертуры световода и поперечные распределения интенсивности оптического излучения на выходе из световода в случаях использования в качестве источников излучения лазера и светодиода.

Контрольные вопросы

- 1. Что такое мода волоконного световода?
- 2. Почему в случае использования в качестве источника лазера излучение на выходе из многомодового световода имеет спекловую структуру, а в случае светодиода нет?
- 3. Будет ли на выходе из световода наблюдаться спекловая структура в случае одномодового волокна?
- 4. Используя результаты выполненных измерений, оцените разность показателей преломлений сердцевины и оболочки оптического волокна.
- 5. Что будет происходить со спекловой структурой в случае механических движений отдельных участков многомодового волокна?
 - 6. Определите понятие «длина волны отсечки» применительно к волоконному световоду.

Библиографический список

1. Листвин А.В., Листвин В.Н., Швырков Д.В. Оптические волокна для линий связи. М., 2003, С. 9-25, 144-153.

2. Фриман Р. Волоконно-оптические системы связи. М.: Техносфера, 2007. С. 30 - 45, 54 - 55, 92 - 95.

Полный перечень заданий и вопросов к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями, приведен в методических указаниях.

1. Лазерные и волоконно-оптические информационные устройства: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост. Д.А. Морозов, М.В. Чиркин. – Рязань: $P\Gamma PTY$, 2012. - 72 с.

Список типовых контрольных вопросов для оценки уровня сформированности знаний, умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 1. Какие лазеры называются инжекционными?
- 2. Почему лазерную генерацию можно получить в полупроводниках только с прямой структурой энергетических зон?
 - 3. Что такое двойная гетероструктура?
- 4. Почему поперечное сечение оптического пучка, генерируемого лазерным диодом, является эллиптическим?
 - 5. Чем отличается излучение лазерного диода от излучения светодиода?
 - 6. Что такое гауссов пучок? Киками параметрами он характеризуется?
- 7. Сформулируйте закон преобразования комплексного параметра гауссова пучка при распространении в свободном пространстве.
- 8. Сформулируйте закон преобразования комплексного параметра гауссового пучка линзой.
- 9. Как рассчитать положение и поперечный размер перетяжки гауссового пучка в оптическом резонаторе?
 - 10. Какие типы оптических резонаторов Вам известны?
 - 11. Постройте диаграмму устойчивости оптических резонаторов.
 - 12. Что такое продольная мода оптического резонатора?
 - 13. Что такое поперечная мода оптического резонатора?
 - 14. Какие методы селекции поперечных мод Вам известны?
 - 15. Сформулируйте закон преломления света на границе раздела двух сред.
- 16. Что такое угол Брюстера и каким образом он зависит от показателей преломления сред?
- 17. Что такое полное внутреннее отражение и при каком условии это явление имеет место?
 - 18. Что такое мода оптического волокна?
 - 19. В чем заключается отличие одномодовых волокон от многомодовых?
- 20. В чем сущность процесса химического парофазного осаждения при производстве заготовок оптических волокон?
 - 21. Какие источники потерь излучения в оптическом волокне Вам известны?
 - 22. Какие механизмы хроматической дисперсии волокна Вам известны?
 - 23. Что такое коэффициент дисперсии волокна?
 - 24. Какое оптическое волокно называется градиентным?
 - 25. Что такое волокно с ненулевой смещенной дисперсией?
 - 26. Устройство волоконно-оптического усилителя?
- 27. Что такое мультиплексирование по длинам волн и каким образом оно реализуется в волоконно-оптических линиях связи?
- 28. Каким образом осуществляется компенсания дисперсии в волоконно-оптических линиях связи?
 - 29. В чем состоит эффект оптического туннелирования?
 - 30. Что такое оптический изолятор?

- 31. В чем заключается эффект Поккельса?
- 32. Какими способами осуществляется модуляция добротности оптического резонатора?
- 33. Что такое квантрон?
- 34. В чем заключается магнитооптический эффект Фарадея?
- 35. Что такое интерферометр Фабри-Перо и для каких целей он используется в лазерных и волоконно-оптических устройствах?
- 36. В чем заключается принцип измерения перемещений с помощью интерферометра Майкельсона?
 - 37. Что такое интерферометр Маха Цандера?
 - 38. Что такое волоконно-оптическая решетка Брэгга?
- 39. В чем заключается фазовый метод измерения расстояний и какие лазеры применяются для его практической реализации?
- 40. Какие требования предъявляются к лазеру для допплеровского измерителя скорости?
 - 41. Что такое лидар?
 - 42. В чем заключается эффект Саньяка?
- 43. Принцип измерения угловой скорости с помощью волоконно-оптического гироскопа.
 - 44. Какие элементы входят в состав волоконно-оптического гироскопа?
 - 45. Что такое кольцевой лазер?
 - 46. Каким образом формируются квадратурные сигналы в лазерном гироскопе?
 - 47. Что такое порог захвата (порог синхронизации встречных волн) в кольцевом лазере?
 - 48. Для чего в кольцевых лазерах применяется знакопеременная частотная подставка?
- 49. Что такое эффект Зеемана и как он используется для создания частотной подставки в кольцевом лазере?
- 50. Какие источники погрешностей при измерениях угловых перемещений и угловых скоростей с помощью лазерного гироскопа Вам известны?
 - 51. Как работает лавинный фотодиод?
 - 52. Чем отличаются фотодиодный и фотогальванический режимы работы фотодиода?

Примерная тематика курсовых работ:

- 1. Расчет полусимметричного оптического резонатора линейного гелий-неонового лазера.
- 2. Расчет оптического резонатора лазера на углекислом газе.
- 3. Расчет трехзеркального резонатора кольцевого лазера.
- 4. Расчет четырехзеркального резонатора кольцевого лазера.
- 5. Расчет потерь при диафрагмировании лазерного пучка для селекции поперечных мод в оптическом резонаторе.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ФГБОУ ВО "РГРТУ", РГРТУ, Серебряков Андрей Евгеньевич, и.о. заведующего кафедры ЭП

Об.09.24 17:10 Простая подпись (MSK)

Оператор ЭДО ООО "Компания "Тензор"

Простая подпись

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО ФГБОУ ВО "РГРТУ", РГРТУ, Круглов Сергей Александрович, **01.09.25** 19:46 (МSK) Заведующий кафедрой ПЭЛ