МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им.В.Ф.УТКИНА»

Факультет радиотехники и телекоммуникаций Кафедра радиоуправления и связи

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

«Беспроводные сети связи»

Специальность
11.03.02 Инфокоммуникационные технологии и системы связи
Специализация
«Программно-аппаратная инженерия в телекоммуникациях "интернет вещей"»

Квалификация выпускника бакалавр Очная форма обучения

1. Общие положения

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на лабораторных работах и практических занятиях.

При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено». Защита лабораторных работ - средство, позволяющее оценить умение и владение обучающегося излагать суть поставленной задачи, самостоятельно применять стандартные методы решения поставленной задачи с использованием имеющейся лабораторной базы, проводить анализ полученного результата работы. Выполнение и защита всех лабораторных работ, предусмотренных программой, является допуском к экзамену по изучаемой дисциплине.

Целью проведения практических занятий является углубление изучения разделов дисциплины с целью получения навыков применения теоретических знаний к решению практических задач. Средством текущего контроля по данному виду занятий является итоговое тестирование в письменной форме. Каждый студент получает вариант задания, состоящий из 3 вопросов. Результат тестирования учитывается преподавателем при проведении итогового контроля по дисциплине (экзамена или зачёта).

Форма проведения экзамена – устный ответ по утвержденным экзаменационным билетам, сформулированным c учетом содержания vчебной В экзаменационный билет дисциплины. включается подготовки теоретических вопроса. В процессе К устному ответу экзаменуемый может составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки и т.п.

2. Паспорт оценочных материалов по дисциплине

No	Контролируемые разделы	Код контролируемой	Форма	
Π/Π	дисциплины	компетенции	оценки	
1	2	3	4	
	Введение			
Модуль 1				
1				
1.1	Понятие о многоканальной системе	ОПК-2 –ОПК-5; ПК-2 –	Экзам.	
	радиосвязи	ПК-6; ПК-11 – ПК-14;		
		ПК-17 –ПК-19		
1.2	Особенности УКВ диапазона и	ОПК-2 –ОПК-5; ПК-2 –	Экзам.	
	возможность построения	ПК-6; ПК-11 – ПК-14;		
	широкополосных и	ПК-17 –ПК-19		
	помехоустойчивых каналов			
	радиосвязи.			
1.3	Методы модуляции в РРЛ.	ОПК-2 –ОПК-5; ПК-2 –	Экзам.	
	Эффективность РРС	ПК-6; ПК-11 – ПК-14;		
		ПК-17 –ПК-19		
	Модуль 2	14		
2	РАДИОРЕЛЕЙНЫЕ ЛИНИИ ПРЯМО			
2.1	РРЛ с частотным уплотнением	ОПК-2 –ОПК-5; ПК-2 –	Экзам.	
	каналов и аналоговыми методами	ПК-6; ПК-11 — ПК-14;		
	передачи.	ПК-17 –ПК-19		
2.2	РРЛ с временным разделением	ОПК-2 –ОПК-5; ПК-2 –	Экзам.	
	каналов и аналоговыми методами	ПК-6; ПК-11 – ПК-14;		
	передачи.	ПК-17 –ПК-19		
			-	
2.3	РРЛ с цифровыми методами	ОПК-2 – ОПК-5; ПК-2 –	Экзам.	
	передачи информации	ПК-6; ПК-11 – ПК-14;		
	11	ПК-17 –ПК-19		
Модуль 3				
3	ОБЕСПЕЧЕНИЕ НАДЁЖНОЙ РАБО		<u> </u>	
3.1	Виды отказов РРЛ. Параметры	ОПК-2 – ОПК-5; ПК-2 –	Экзам.	
	надёжности РРЛ	ПК-6; ПК-11 – ПК-14;		
2.2	M	ПК-17 –ПК-19	2	
3.2	Методы повышения надёжности	ОПК-2 – ОПК-5; ПК-2 –	Экзам.	
	аппаратуры	ПК-6; ПК-11 – ПК-14;		
	N A - A	ПК-17 –ПК-19		
Модуль 4				
4	РАДИОРЕЛЕЙНИЕ ЛИНИИ ТРОПОСФЕРНОГО РАССЕЯНИЯ			
4.1	Статистические характеристики	ОПК-2 –ОПК-5; ПК-2 –	Экзам.	
	сигнала при дальнем тропосферном	ПК-6; ПК-11 – ПК-14;		

	распространении УКВ	ПК-17 –ПК-19		
4.2	Особенности построения	ОПК-2 –ОПК-5; ПК-2 –	Экзам.	
	тропосферных РРЛ. Разнесение в	ПК-6; ПК-11 – ПК-14;		
	пространстве, по частоте и углу	ПК-17 –ПК-19		
Модуль 5				
5	ПРОЕКТИРОВАНИЕ РАДИОРЕЛЕЙНЫХ СИСТЕМ ПЕРЕДАЧИ			
5.1	Общие принципы построения	ОПК-2 –ОПК-5; ПК-2 –	Зачёт	
	радиорелейных линий. Основы	ПК-6; ПК-11 – ПК-14;		
	построения сетей ВСС и МККР.	ПК-17 –ПК-19		
	Гипотетические цепи ВСС и МККР			
5.2	Основные характеристики	ОПК-2 –ОПК-5; ПК-2 –	Зачёт	
	радиорелейных систем	ПК-6; ПК-11 – ПК-14;		
	_	ПК-17 –ПК-19		
5.3	Основы расчёта трасс	ОПК-2 –ОПК-5; ПК-2 –	Зачёт	
	радиорелейных линий прямой	ПК-6; ПК-11 – ПК-14;		
	видимости. Уравнение передачи при	ПК-17 –ПК-19		
	связи на УКВ			
5.4	Методы и средства повышения	ОПК-2 –ОПК-5; ПК-2 –	Зачёт	
	устойчивости связи на РРЛ	ПК-6; ПК-11 – ПК-14;		
		ПК-17 –ПК-19		
5.5	Особенности расчёта цифровых	ОПК-2 –ОПК-5; ПК-2 –	Зачёт	
	РРЛ. Критерии устойчивости и	ПК-6; ПК-11 – ПК-14;		
	качества связи на ЦРРЛ	ПК-17 –ПК-19		
	Модуль 6			
6				
	СПУТНИКОВ ЗЕМЛИ			
6.1	История развития ССПИ.	ОПК-2 –ОПК-5; ПК-2 –	Зачёт	
	Классификация ССПИ. Общая схема	ПК-6; ПК-11 – ПК-14;		
	построения систем связи через ИСЗ	ПК-17 –ПК-19		
6.2	Основные принципы построения	ОПК-2 –ОПК-5; ПК-2 –	Зачёт	
	ССПИ. Виды спутниковых служб.	ПК-6; ПК-11 – ПК-14;		
	Орбиты связных ИСЗ. Структура и	ПК-17 –ПК-19		
	состав ССПИ			
6.3	ССПИ с использованием ГСР	ОПК-2 –ОПК-5; ПК-2 –	Зачёт	
		ПК-6; ПК-11 – ПК-14;		
		ПК-17 –ПК-19		
6.4	ССПИ на базе негеостационарных	ОПК-2 –ОПК-5; ПК-2 –	Зачёт	
	CP.	ПК-6; ПК-11 – ПК-14;		
I		ПК-17 –ПК-19		

3. Критерии оценивания компетенций

1) Уровень усвоения материала, предусмотренного программой.

- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

«Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Оценка «зачтено» выставляется, если задание по работе выполнено в полном объеме. Студент усвоил программный материал, точно и аргументированно ответил на контрольные вопросы, свободно ориентируется в предложенном решении, показал глубокие знания, владеет приёмами рассуждения и сопоставляет материал из разных источников, теорию связывает с практикой, другими темами курса, без ошибок выполнил практическое задание. Отчет выполнен аккуратно и в соответствии с

предъявляемыми требованиями. Дополнительным условием получения зачёта могут стать хорошие успехи при выполнении самостоятельной и контрольной работы, активная работа на практических занятиях.

Оценка «не зачтено» выставляется студенту, который не справился с 50% вопросов и заданий билета, в ответах на вопросы допустил существенные ошибки. не выполнил все задания работы и не может объяснить полученные результаты.

4. Типовые контрольные задания

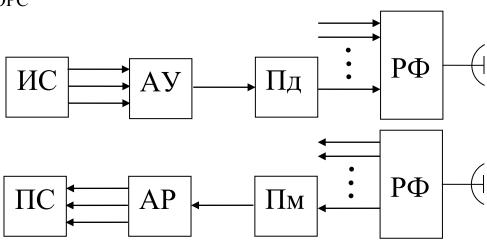
- 1. Исторические этапы развития радиосистем.
- 2. Особенности построения РРЛ прямой видимости, ТРРЛ и ССС.
- 3. Роль РРЛ, ТРРЛ и ССС в ВСС.
- 4. Понятие о многоканальной системе радиосвязи. Классификация систем многоканальной радиосвязи.
- 5. Особенности УКВ диапазона и возможность построения широкополосных и помехоустойчивых каналов радиосвязи.
 - 6. Структурная схема РРЛ. Виды станций. Классификация станций.
 - 7. Виды сообщений, передаваемых по РРЛ.
 - 8. Понятие ствола РРЛ. Пропускная способность ствола.
 - 9. Помехи в каналах связи.
 - 10. Принципы уплотнения ШП сигналов.
 - 11. Характеристики МКС.
 - 12. Методы модуляции в РРЛ.
- 13. Эффективность и помехоустойчивость различных видов модуляции.
 - 14. Пороговые свойства видов модуляции.
- 15. РРЛ с частотным уплотнением каналов и аналоговыми методами передачи.
 - 16. Структурные схемы станций РРЛ.
 - 17. Построение аппаратуры телефонных и телевизионных стволов.
 - 18. Передача видеосигналов и сигналов звукового сопровождения.
- 19. Способы выделения телефонных каналов и программ телевидения на ПРС.
 - 20. Применение частотных предыскажений.
 - 21. Помехи и искажения в каналах на РРЛ.
 - 22. Тепловые шумы: источники, характеристики.
 - 23. Виды переходных шумов.
 - 24. Переходные шумы в групповом тракте.
 - 25. Переходные шумы, вызванные искажениями ВЧ сигнала.
 - 26. Влияние ограничителей амплитуд на шумы в каналах.
 - 27. Сложение тепловых и переходных шумов на магистрали.
- 28. РРЛ с временным разделением каналов и аналоговыми методами передачи.
 - 29. Методы модуляции в РРЛ с ВРК.

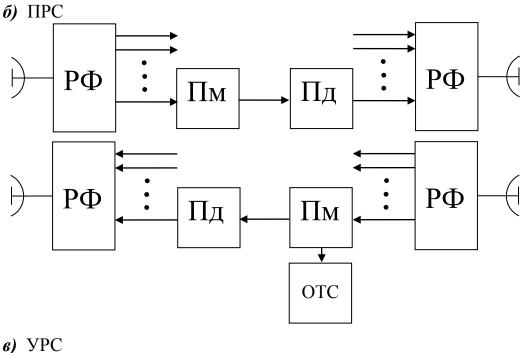
- 30. Помехоустойчивость и эффективность РРС при различных видах модуляции.
 - 31. Структурные схемы станций РРЛ,
 - 32. Выделение каналов на промежуточных станциях.
 - 33. Виды искажений и помех в каналах.
- 34. Тепловые шумы и переходные помехи при ФИМ-АМ; методы их снижения.
 - 35. Особенности построения ВЧ трактов с ФИМ-АМ.
 - 36. Накопление тепловых шумов и переходных помех на линии.
 - 37. РРЛ с цифровыми методами передачи информации.
 - 38. Применение на ЦРРЛ ИКМ и ДМ.
 - 39. Структурные схемы станций.
 - 40. Виды искажений и помех в каналах и их накопление.
 - 41 Регенерация импульсов.
- 41. Виды отказов РРЛ. Параметры надёжности РРЛ (наработка на отказ, вероятность безотказной работы, коэффициент готовности).
- 42. Методика расчёта готовности РРЛ. Пути повышения надёжности радиотракта и устройств электропитания станций РРЛ.
- 43. Повышение надёжности аппаратуры (применение элементов и узлов высокой надёжности, создание облегчённых режимов работы, резервирование, автоматизированный контроль, прогнозирование состояния аппаратуры).
 - 44. Гарантированные системы электропитания станций РРЛ.
 - 45. Поствольное, постанционное резервирование на РРЛ.
- 46. Ожидаемая надёжность связи при различных способах резервирования.
 - 47. Телесигнализация и телеуправление.
 - 48. Принципы построения аппаратуры телеконтроля и телеуправления.
 - 49. Организация служебной связи на РРЛ.
- 50. Измерение параметров аппаратуры, характеристик телефонного и телевизионного стволов РРЛ.
- 51. Статистические характеристики сигнала при дальнем тропосферном распространении УКВ.
- 52. Искажения сигналов из-за многолучевого распространения радиоволн.
 - 53. Особенности построения тропосферных РРЛ.
- 54. Разнесение в пространстве, по частоте и углу. Сдвоенный и счетверённый приём.
 - 55. Линейное и оптимальное сложение, автовыбор.
- 56. Построение приёмо-передающей аппаратуры и антенно-фидерного тракта.
- 57. Основы построения сетей ВСС и МККР. Гипотетические цепи ВСС и МККР.
- 58. Нормы ВСС и рекомендации МККР на основные характеристики каналов РРЛ,

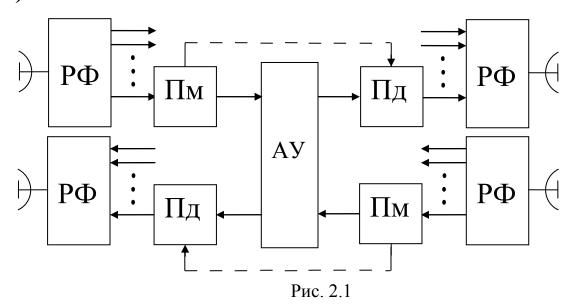
- 59. Основные характеристики радиорелейных систем.
- 60. Особенности частотных диапазонов, используемых на РРЛ. Планы распределения частот.
- 61. Аппаратура РРЛ прямой видимости. Технические характеристики типовых РРЛ.
 - 62. Системы энергоснабжения РРС.
 - 63. Системы служебной связи и телеобслуживания.
 - 64. Организация резервирования РРЛ. Виды и способы.
 - 65. Алгоритм расчёта трасс радиорелейных линий прямой видимости
 - 66. Уравнение передачи при связи на УКВ.
 - 67. Причины замираний сигналов на трассе РРЛ.
 - 68. Основные энергетические соотношения.
 - 69. Рефракция волн. Классификация трасс.
 - 70. Расчёт первой зоны Френеля на пролёте.
 - 71. Выбор трассы, аппаратуры РРЛ, структуры АФТ.
 - 72. Расчёт множителя ослабления для открытых трасс.
 - 73. Расчёт множителя ослабления для закрытых трасс.
 - 74. Определение величины запаса на замирания на интервале РРЛ.
 - 75. Энергетический расчёт пролётов РРЛ.
- 76. Критерии и оценка устойчивости связи. Расчёт $T_{0_0}(V_{\min}), \sum T_0(V_{\min}), T_{\sigma}(V_{\min}), T_{mp}(V_{\min}), T_{ppg}(V_{\min}).$
 - 77. Расчёт уровня шумов на выходах каналов.
 - 78. Проверка устойчивости и качества связи.
 - 79. Оптимизация структуры и параметров РРЛ.
 - 80. Методы и средства повышения устойчивости связи на РРЛ.
 - 81. Разнесённый приём на РРЛ. Виды разнесённого приёма.
 - 82. Методы комбинирования сигналов.
 - 83. Расчёт устойчивости связи при разнесённом приёме.
 - 84. Применение и расчёт пассивных ретрансляторов.
- 85. Особенности расчёта цифровых РРЛ. Критерии устойчивости и качества связи на ЦРРЛ.
 - 86. Расчёт потерь распространения радиосигнала на интервале.
- 87. Расчёт множителя ослабления на закрытых и открытых интервалах.
 - 88. Расчёт неустойчивости связи.
 - 89. Расчёт показателей качества.
 - 90. История развития ССПИ.
 - 91. Классификация ССПИ.
 - 92. Общая схема построения систем связи через ИСЗ.
 - 93. Земные и бортовые станции.
 - 94. Системы с немедленной ретрансляцией и запоминанием.
 - 95. Активная и пассивная ретрансляции сигналов.
 - 96. Основные принципы построения ССПИ.
 - 97. Виды спутниковых служб.

- 98. Орбиты связных ИСЗ.
- 99. Структура и состав ССПИ.
- 100. Особенности распространения сигналов на спутниковых линиях.
- 101. ССПИ с использованием ГСР (4+3 часа)
- 102. Общая характеристика ССПИ. Организация работы через ГСР.
- 103. Основные характеристики приёмопередающей аппаратуры 3С и ГСР.
 - 104. Антенны 3С и ГСР.
 - 105. Усилители мощности передатчика.
 - 106. Диапазоны частот для спутниковой связи.
 - 107. Потери радиосигналов на трассе.
 - 108. Виды модуляции и способы уплотнения.
 - 109. Технология МД в ГССПИ.
 - 110. Пути повышения пропускной способности ГССПИ.
- 111. ССПИ на базе негеостационарных СР. Особенности построения НССС.
 - 112. Преимущества и недостатки негеостационарных ССС.

5. Варианты контрольных вопросов с ответами


Вопрос 1. Приведите структурные схемы станций РРЛ прямой видимости.


Ответ. Многоствольная структура включает три типа станций: узловые радиорелейные станции УРС, промежуточные радиорелейные станции ПРС, оконечные радиорелейные станции ОРС.


Структура одного дуплексного ствола представлена на рис. 2.1:

- а) Структура оконечной радиорелейной станции;
- б) Структура промежуточной радиорелейной станции;
- *в*) Структура узловой радиорелейной станции.

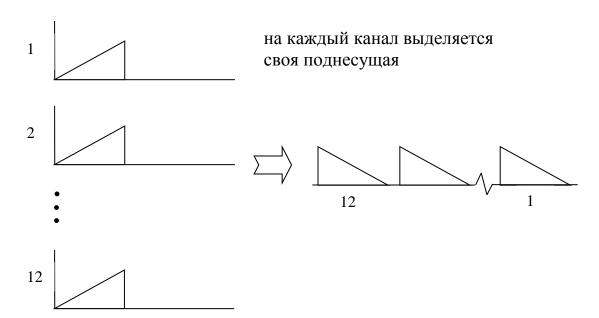
Разделительный фильтр РФ решает задачу развязки стволов внутри группы на приём или передачу, а также задачу развязки этих групп на приём и передачу.

Антенно-фидерный тракт объединяется за счёт поляризационного селектора или за счёт ферритового циркулятора.

- 1) ОРС станции, располагающиеся в оконечных пунктах, где находятся источники и потребители информации.
- это станции переприёма сигналов (приём, усиление и **2**) ΠPC передача), где осуществляется ретрансляция сигнала по промежуточной частоте. Здесь отсутствуют групповые тракты и групповые сигналы. На

ПРС можно ответвлять телевизионные программы с помощью оконечной телевизионной стойки (ОТС).

3) УРС: на любой узловой станции может быть ретрансляция без демодуляции по промежуточной частоте (на рис. 2.1 этот случай обозначен штриховыми стрелками) или с демодуляцией и ретрансляцией по групповым спектрам.


Вопрос 2. Проиллюстрируйте принцип частотного уплотнения телефонных каналов.

Ответ. Частотные спектры индивидуальных каналов переносятся по частоте таким образом, чтобы не перекрывать друг друга:

$$\Delta F = \Delta F_1 + \Delta + \Delta F_2 + \Delta + \Delta F_3 + \Delta + \dots + \Delta F_N - \dots$$

- сумма полезных полос и защитных интервалов Δ .

Такой широкополосный канал используется всеми абонентами одновременно. Образование первичной группы ПГ (12 каналов ТЧ с полосой 0,3-3,4 кГц):

Каждому каналу ТЧ отводится полоса 4 к Γ ц. Для формирования П Γ формируются 12 поднесущих частот: 64, 68, 72,...104, 108 к Γ ц. При этом используется модуляция ОБП. Общая занимаемая полоса частот 48 к Γ ц.

Из пяти ПГ и пяти поднесущих частот формируется вторичная группа из 60-ти каналов ТЧ с полосой 240 кГц.

Таким же образом формируются вторичная (300 кан. ТЧ) и третичная (1500 кан. ТЧ) группы.

Вопрос 3. Как реализуется принцип временного уплотнения каналов?

Ответ. Сообщения передаются по общему каналу связи не одновременно. Общий канал предоставляется поочерёдно каждому абоненту на протяжении канального интервала $\Delta \tau_{\kappa}$ за счёт коммутации канала.

Структура сигнала:

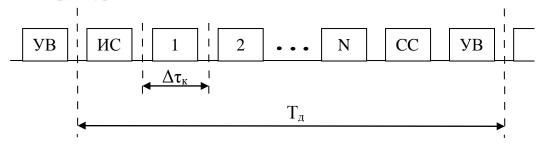


Рис. 3.5

$$T_{\text{\tiny Z}} = 1/2 \mu F_{\text{\tiny B}}$$

Где $T_{\text{д}}$ — это период дискретизации; μ — коэффициент запаса, учитывающий, что фильтры не могут быть идеальными (поэтому нельзя восстановить полностью исходный сигнал). Значение этого коэффициента может достигать тысячи. В телефонии μ = 1.18, $F_{\text{в}}$ = 3.4 кГц и, следовательно, $F_{\text{д}}$ = 8 кГц.

ИС – импульс синхронизации;

УВ – управление вызова;

СС – служебная связь.

$$\Delta \tau_{\kappa} = T_{\text{A}}/(N+n) = T_{\text{A}}/N_{\text{rp}}$$

 Γ де N — количество полезных каналов, а n — количество дополнительных (служебных) каналов.

Оценочный материал составлен в соответствии с Программой Государственного образовательного стандарта высшего профессионального образования для подготовки бакалавров по направлению подготовки 11.03.02 Инфокоммуникационные технологии и системы связи»

Оператор ЭДО ООО "Компания "Тензор"р **03.07.25** 11:40 (MSK)Простая подпись

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО

ФГБОУ ВО "РГРТУ", РГРТУ, Дмитриев Владимир Тимурович, Заведующий кафедрой РУС