МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА ПРОМЫШЛЕННАЯ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

СТАТИСТИЧЕСКАЯ ФИЗИКА ЭЛЕКТРОННЫХ ПРОЦЕССОВ

1. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (зачтено, незачтено).

2. Паспорт фонда оценочных средств по дисциплине (модулю)

№ п/ п	№ раз дел а	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контрол и- руемой компетен -ции (или её части)	Этап формирования контролируемой компетенции (или её части)	Наименование оценочного средства
1	1	Введение.	ОПК-2.1, ОПК-2.2	Лекционные и самостоятельные занятия обучающихся в течение учебного семестра	Результаты решения задач, ответы на тестовые задания, зачет
2	2	Распределение Максвелла	ОПК-2.1, ОПК-2.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Результаты решения задач, отчеты по лабораторным работам, ответы на тестовые задания, зачет
3	3	Распределение Больцмана	ОПК-2.1, ОПК-2.2	Лекционные и самостоятельные занятия обучающихся в течение учебного семестра	Результаты решения задач, отчеты по лабораторным работам,

					ответы на
					тестовые
					задания, зачет
4	4	Распределение Ферми-	ОПК-2.1,	Лекционные и	Результаты
		Дирака	ОПК-2.2	самостоятельные	решения задач,
				занятия обучающихся в	отчеты по
				течение учебного	лабораторным
				семестра	работам,
					ответы на
					тестовые
					задания, зачет
5	5	Распределение Бозе-	ОПК-2.1,	Лекционные и	Результаты
		Эйнштейна	ОПК-2.2	самостоятельные	решения задач,
				занятия обучающихся в	ответы на
				течение учебного	тестовые
				семестра	задания, зачет
6	6	Кинетическая теория	ОПК-2.1,	Лекционные,	Результаты
		процессов переноса	ОПК-2.2	лабораторные и	решения задач,
				самостоятельные	ответы на
				занятия обучающихся в	тестовые
				течение учебного	задания, зачет
				семестра	
7	7	Случайные процессы в	ОПК-2.1,	Лекционные и	Результаты
		электронных приборах	ОПК-2.2	самостоятельные	решения задач,
				занятия обучающихся в	отчеты по
				течение учебного	лабораторным
				семестра	работам,
					ответы на
					тестовые
					задания, зачет

3. Формы текущего контроля

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях, по результатам выполнения обучающимися индивидуальных заданий, проверки качества конспектов лекций и иных материалов.

Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, на лабораторных и практических занятиях, а также экспресс – опросов по лекционным материалам.

4. Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является зачет. Форма проведения зачета — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Целью проведения промежуточной аттестации (зачета) является проверка общекультурных, общепрофессиональных и профессиональных компетенций, приобретенных студентом при освоении дисциплины.

5. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, шкал оценивания

Оценка степени формирования указанных выше контролируемых компетенций у обучающихся на различных этапах их формирования проводится преподавателем во время консультаций, лабораторных работ по шкале оценок «зачтено» — «не зачтено». Текущий контроль по дисциплине проводится в виде опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, и на лабораторных занятиях, а также экспресс — опросов и заданий по лекционным материалам, лабораторным работам. Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий и самостоятельной работы оценивается по критериям шкалы оценок - «зачтено» — «не зачтено». Для получения оценки «зачтено» обучающемуся необходимо подтвердить освоение формируемых компетенций не менее, чем на 75%. Освоение материала дисциплины и достаточно высокая степень формирования контролируемых компетенций обучающегося (не менее, чем 75%) служат основанием для допуска, обучающегося к этапу промежуточной аттестации - зачету.

Целью проведения промежуточной аттестации (зачета) является проверка компетенций, приобретенных студентом при изучении дисциплины.

Уровень теоретической подготовки студента определяется составом и степенью формирования приобретенных компетенций, усвоенных теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач в области изучаемого предмета.

Зачет организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с преподавателем, являются билет, содержание которого определяется ОПОП и настоящей рабочей программой. Билет включает в себя, как правило, два вопроса, которые относятся к указанным выше теоретическим разделам дисциплины.

Оценке на заключительной стадии зачета подвергаются устные ответы студента на вопросы билета, а также дополнительные вопросы преподавателя.

Применяется шкала оценок: "зачтено", "не зачтено", что соответствует шкале "компетенции студента соответствуют требованиям ФГОС ВО", "компетенции студента не соответствуют требованиям ФГОСВО".

6. Критерии оценивания промежуточной аттестации

Таблица 1 - Критерии оценивания промежуточной аттестации

Шкала оценивания	Критерии оценивания	
«зачтено»	студент должен: продемонстрировать достаточно полное знание	
	материала; продемонстрировать знание основных теоретических	
	понятий; достаточно последовательно, грамотно и логически	
	стройно излагать материал; уметь сделать достаточно	
	обоснованные выводы по излагаемому материалу; ответить на	
	все вопросы билета; продемонстрировать умение правильно	
	выполнять практические задания, предусмотренные программой,	
	при этом возможно допустить непринципиальные ошибки.	
«незачтено»	ставится в случае: незнания значительной части программного	
	материала; не владения понятийным аппаратом дисциплины;	
	существенных ошибок при изложении учебного материала;	

неумения строить ответ в соответствии со структурой излагаемого вопроса; неумения делать выводы по излагаемому материалу. Как правило, оценка «незачтено» ставится студентам, которые не могут продолжить обучение по образовательной программе без дополнительных занятий по соответствующей дисциплине (формирования И развития компетенций, закрепленных за данной дисциплиной). Оценка «незачтено» выставляется также, если студент после начала зачета отказался его сдавать или нарушил правила сдачи (списывал, подсказывал, обманом пытался получить более высокую оценку и т.д.).

Примеры заданийи контрольных вопросов к лабораторным работам, выполняемым дляприобретения и развития знаний и практических умений, предусмотренных компетенциями.

Лабораторная работа №2 **Распределение Максвелла**

В данной работе вычислительные операции с использованием ФР осуществляются в среде Mathcad; графики рассчитанных зависимостей при оформлении отчета следует импортировать в документ Microsoft Word, в котором формируется отчет о работе.

- 1. Рассчитать и на одном поле построить три $\Phi P F(E)$, каждая из которых соответствует значению температуры электронов, заданному преподавателем. Энергию электронов задавать в электронвольтах.
- 2. Осуществить численное дифференцирование рассчитанных зависимостей F(E) и для каждой из них найти значение кинетической энергии E_p , соответствующее нулю первой производной в локальном максимуме функции распределения. Сравнить каждое из найденных значений с кинетической энергией, соответствующей наиболее вероятной скорости v_p . Объяснить причину расхождений. Вывести самостоятельно формулу для теоретического расчета значения кинетической энергии, которому соответствует максимум распределения F(E). Результаты вычислений занести в таблицу:

T_e , $9B$		
E_p , $3B$ – результат численного дифференцирования		
$\Phi P F(E)$		
$m{v_p}^2/2e$, ∂B		
Результат теоретического расчета E_p , эВ		

- 3. Используя ΦP по энергиям (5a), вычислить относительную долю электронов γ , энергия которых превышает величину E_0 ; результаты представить в форме графиков зависимостей $\gamma(E_0)$, построенных на общем поле для каждой температурѕ электронов из заданных преподавателем. Энергии E_0 задавать в электронвольтах.
- 4. Используя формулу Томсона (11), рассчитать зависимость частоты ионизации v_i атомов электронами от энергии электронов для химического элемента, заданного преподавателем, и построить ее график.
- 5. Путем численного интегрирования в соответствии с (12) рассчитать зависимость средней частоты ионизации от температуры электронов. Результат представить в виде графиков зависимости $\langle v_i \rangle$ от T_e , построенных с использованием обычно и логарифмической шкалы. Концентрация атомов и диапазон изменения температуры электронов (в электронвольтах) задаются преподавателем.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Сформулируйте принцип детального равновесия. Какое ограничение накладывает этот принцип на функцию распределения частиц по скорости? Докажите, что функция распределения Максвелла удовлетворяет этому ограничению.
- 2. В чем заключаются условия нормировки функций распределения по компоненте скорости, модулю скорости и кинетической энергии?
- 3. Вывести формулу для расчета наивероятнейшей скорости молекул, используя распределение Максвелла по модулю скорости. Во сколько раз при одной и той же температуре наивероятнейшая скорость у молекул углекислого газа меньше, чем у молекул водяного пара?
- 4. Что такое частота ионизации? Каким образом рассчитывается средняя частота ионизации атомов газа при столкновении с электроном?
- 5. Во сколько раз в изотермической плазме средняя скорость у электронов больше, чем у ионов неона?
- 6. Ионизация атома газа при столкновении с электроном является упругим или неупругим процессом?

Полный перечень заданий и вопросов к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями, приведен в соответствующих методических указаниях.

1		Основы
	статистической физики. Методические указания к лабораторным работам/ Сост	.: M.B.
	Чиркин, Г.В. Давылов, А.Е. Серебряков, В.Ю. Мишин, Рязань, РГРТУ, 2016, 32 с.	

Список типовых контрольных вопросов для оценки уровня сформированности знаний, умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 1. Функция распределения молекул газа по скоростям: постановка задачи.
- 2. Принцип детального равновесия. Особенности функции распределения при детальном равновесии.
- 3. Нормировка функции распределения Максвелла по компоненте скорости.
- 4. Функции распределения Максвелла по модулю скорости и по кинетической энергии. Наивероятнейшая скорость частиц.
- 5. Усреднение значений физических величин с помощью функции распределения: вычисление частот столкновительных процессов в ионизированном газе.
- 6. Усреднение значений физических величин с помощью функции распределения: вычисление потоков частиц, формула Ричардсона для термоэлектронной эмиссии вывод из распределения Максвелла.
- 7. Доплеровское уширение спектральных линий излучения атомов газа.
- 8. Распределение частиц в пространстве при наличии потенциального силового поля.
- 9. Барометрическая формула и атмосферы планет
- 10. Метод самосогласованного поля. Расчет равновесных распределений носителей тока и электрического поля в p-n переходе.
- 11. Спин частицы. Бозоны и фермионы. Тождественность элементарных частиц и принцип Паули.

- 12. Количество состояний электрона в единичном энергетическом интервале. Распределение электронов по энергиям.
- 13. Нормировка функции распределения Ферми-Дирака. Химический потенциал и энергия Ферми.
- 14. Сравнение распределений Ферми-Дирака и Максвелла-Больцмана. Критерий вырождения для электронного газа.
- 15. Заселенность бозонами энергетического состояния при термодинамическом равновесии (распределение Бозе Эйнштейна).
- 16. Количество собственных типов колебаний электромагнитного поля в объемном резонаторе, соответствующих единичному интервалу частот.
- 17. Равновесное тепловое излучение. Формула Планка. Фотоны.
- 18. Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна.
- 19. Упругие и неупругие столкновения частиц, сечение столкновения. Средняя длина свободного пробега. Распределение частиц по длинам свободного пробега.
- 20. Теплопроводность и перенос энергии.
- 21. Диффузия и перенос вещества.
- 22. Вязкость и перенос импульса.
- 23. Электропроводность и перенос заряда.
- 24. Молекулярное течение ультраразреженного газа. Формула Кнудсена.
- 25. Вероятностное описание случайных процессов. Корреляционная функция. Стационарные случайные процессы.
- 26. Эргодичность случайных процессов. Измерения спектральной плотности шума.
- 27. Спектральное разложение случайного процесса. Спектральная плотность шума и ее преобразование в электрических цепях.
- 28. Соотношения Винера Хинчина между автокорреляционной функцией случайной величины и спектральной плотностью шума.
- 29. Тепловой шум. Формула Найквиста для спектральной плотности источника теплового шума.
- 30. Дробовой шум. Формула Шоттки для спектральной плотности источника дробового шума.

Пример типовых практических заданий для укрепления и проверки теоретических знаний, развития умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

Задача 1.Оценить время испарения воды из пробирки высотой l. Первоначально пробирка заполнена наполовину. Относительная влажность воздуха в помещении 50 %, давление насыщенных паров воды p, коэффициент диффузии молекул воды в атмосфере D, плотность жидкой воды ρ . Пар у поверхности воды считать насыщенным, капиллярными явлениями пренебречь

Задача 2.Какая часть молекул кислорода при температуре $T=273~\rm K$ обладает скоростями, лежащими в интервале от $v1=100~\rm m/c$ до $v2=110~\rm m/c$? Чему равна наиболее вероятная скорость движения молекул?

Задача 3. Определить среднюю длину свободного пробега молекул и число соударений за 1 с, происходящих между всеми молекулами кислорода, находящегося в сосуде емкостью 2 л при температуре 270 С и давлении 100 кПа.