МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Микропроцессорная техника в приборах и системах»

Специальность подготовки

24.05.06 Системы управления летательными аппаратами

ОПОП специалитета

«Приборы систем управления летательных аппаратов»

Квалификация (степень) выпускника – инженер

Форма обучения – очно-заочная

Оценочные материалы предназначены для контроля знаний обучающихся по дисциплине «Микропроцессорная техника в приборах и системах» и представляют собой фонд оценочных средств, образованный совокупностью материалов учебно-методических (контрольных заданий, описаний лабораторных работ), предназначенных ДЛЯ оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций обучающихся целям и требованиям основной образовательной программы в ходе проведения учебного процесса.

Основная задача — обеспечить оценку уровня сформированности общепрофессиональных компетенций, приобретаемых обучающимся в соответствии требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации. Контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и проведения, в случае необходимости, индивидуальных консультаций. К контролю успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися, в том числе на практических занятиях и лабораторных работах.

Текущий контроль студентов по дисциплине проводится на основании результатов выполнения ими практических и лабораторных работ. При выполнении практических работ применяется система оценки результатов «зачтено – не зачтено». Для оценивания результатов выполнения лабораторных работ также применяется система оценки «зачтено – не зачтено». Количество практических и лабораторных работ по дисциплине определено утвержденным учебным графиком.

Промежуточная аттестация студентов по дисциплине осуществляется в форме экзамена. Результаты ответов на вопросы, используемые при оценке знаний студентов в форме экзамена, оцениваются оценками «неудовлетворительно», «удовлетворительно», «хорошо», «отлично». Форма проведения экзамена — письменный ответ на вопросы, касающиеся материала, освоенного студентами.

По итогам курса студенты сдают экзамен в 8-м семестре. Форма проведения экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается три теоретических вопроса по темам курса. Результаты сдачи экзамена оцениваются оценками «неудовлетворительно», «удовлетворительно», «хорошо», «отлично».

1 Паспорт фонда оценочных средств по дисциплине

ПК-2: Способен разрабатывать программное обеспечение для комплектующих изделий бортового радиоэлектронного оборудования.

ПК-2.4. Пишет тексты программы

Знает: классификацию микропроцессоров; архитектуры микропроцессоров; ассемблеры микропроцессоров; запоминающие устройства микропроцессоров; организацию ввода-вывода микропроцессорных систем; области применения микропроцессоров в приборах систем управления летательными аппаратами.

Умеет: разрабатывать логику работы программ микропроцессоров; разрабатывать программы на языках ассемблеров микропроцессоров.

Владеет: средствами разработки программ для микропроцессоров и микроконтроллеров; средствами отладки программ для микропроцессоров и микроконтроллеров.

ПК-2.5. Тестирует программное обеспечение

Знает: понятие тестирования программного обеспечения; понятие тестировщика программного обеспечения; перечень навыков тестировщика программного обеспечения; модели разработки программного обеспечения; жизненный цикл тестирования программного обеспечения; основные принципы тестирования программного обеспечения; виды и направления тестирования.

Умеет: применять различные виды и направления тестирования программного обеспечения.

Владеет: инструментальными средствами тестирования программного обеспечения.

№	Контролируемые разделы	Код	Наименование
Π/Π	дисциплины	контролируемой	оценочного средства
		компетенции	
1	Архитектура	ПК-2.4	Отчет о выполнении
	микропроцессоров		задания практического
			занятия, экзамен
2	Микроконтроллеры семейства	ПК-2.4	Отчет о выполнении
	AVR		задания практического
			занятия, отчет о
			выполнении
			лабораторной работы,
			экзамен
3	Микропроцессоры на основе	ПК-2.4	Отчет о выполнении
	архитектуры х86		задания практического
			занятия, отчет о
			выполнении лаборатор-
			ной работы, экзамен
4	Микропроцессоры на основе	ПК-2.4	Отчет о выполнении
	архитектур х32 и х64		лабораторной работы,
			экзамен
5	Арифметический сопроцессор	ПК-2.4	Отчет о выполнении
			лабораторной работы,
			экзамен

6	Память микропроцессорной	ПК-2.4	Отчет о выполнении	
	системы		задания практического	
			занятия, экзамен	
7	Организация ввода-вывода в	ПК-2.4	Отчет о выполнении	
	микропроцессорной системе		задания практического	
			занятия, экзамен	
8	Применение	ПК-2.4	Отчет о выполнении	
	микропроцессоров в приборах		задания практического	
	систем управления		занятия, экзамен	
	летательных аппаратов			
9	Тестирование программного	ПК-2.5	Отчет о выполнении	
	обеспечения		задания практического	
			занятия, экзамен	

Критерии оценивания компетенций по результатам выполнения практических и защиты лабораторных работ, сдачи экзамена

- 1. Уровень усвоения материала, предусмотренного программой.
- 2. Умение анализировать материал, устанавливать причинно-следственные связи.
- 3. Качество ответов на вопросы: логичность, убежденность, общая эрудиция.

Критерии защиты результатов выполнения практических заданий (работ):

«зачтено» — студент правильно выполнил задание практической работы, ориентируется в механизмах и последовательности решения поставленных в практическом задании задач, представляет отчет о выполнении практического задания;

«не зачтено» – студент не имеет отчета о практической работе, с ошибками или не полностью выполнил задание практической работы, плохо ориентируется в принципах решения задач практического задания.

Критерии приема лабораторных работ:

«зачтено» — студент представил полный отчет о лабораторной работе, ориентируется в представленных в работе результатах, осознано и правильно отвечает на контрольные вопросы;

«не зачтено» – студент не имеет отчета о лабораторной работе, в отчете отсутствуют некоторые пункты задания на выполнение работы, при наличии полного отчета студент не ориентируется в представленных результатах и не отвечает на контрольные вопросы.

Критерии выставления оценок при аттестации результатов обучения по дисциплине в виде экзамена:

 на «отлично» оценивается глубокое раскрытие вопросов, поставленных в задании зачета, понимание смысла поставленных вопросов, полные ответы на смежные вопросы, показывающие всестороннее, системное усвоение учебного материала;

- на «хорошо» оценивается полное раскрытие вопросов, поставленных в задании зачета, понимание смысла поставленных вопросов, но недостаточно полные ответы на смежные вопросы;
- на «удовлетворительно» оценивается неполное раскрытие вопросов задания зачета и затруднения при ответах на смежные вопросы;
- на «неудовлетворительно» оценивается слабое и неполное раскрытие вопросов задания зачета, отсутствие осмысленного представления о существе вопросов, отсутствие ответов на дополнительные вопросы.

2 Примеры контрольных вопросов для оценивания компетенций

Вопросы для проверки

ПК-2.4

- 1. Понятие микропроцессора. Цикл команды.
- 2. Система команд.
- 3. Классификация микропроцессоров.
- 4. Однокристальные микропроцессоры.
- 5. Многокристальные микропроцессоры.
- 6. Операционный процессор. Управляющий процессор.
- 7. Универсальный микропроцессор.
- 8. Специализированный микропроцессор.
- 9. Однопрограммный микропроцессор. Мультипрограммный микропроцессор.
 - 10. Основные характеристики микропроцессоров.
 - 11. Микроархитектура. Макроархитектура.
 - 12. Структура типового микропроцессора.
- 13. Особенности программного и микропрограммного управления операциями.
- 14. Типы архитектуры. Архитектура Дж. Фон Неймана. Архитектура Гарвардской лаборатории.
 - 15. Регистровая архитектура.
 - 16. Стековая архитектура.
 - 17. Архитектура, ориентированная на память.
 - 18. Микропроцессор і8080.
- 19. Режимы адресации памяти. Непосредственная адресация. Прямая адресация. Относительная адресация. Укороченная адресация.
- 20. Режимы адресации памяти. Регистровая адресация. Косвенная адресация. Автоинкрементная и автодекрементная адресация.
- 21. Режимы адресации памяти. Стековая адресация. Программный стек. Аппаратный стек.
- 22. Организация ввода-вывода в микропроцессорной системе. Программная модель внешнего устройства.
- 23. Форматы передачи данных. Параллельная передача данных. Последовательная передача данных.
- 24. Способы обмена информацией. Программно-управляемый ввод-вывод. Организация прерываний. Организация прямого доступа к памяти.

- 25. Основные характеристики полупроводниковой памяти.
- 26. Постоянные запоминающие устройства.
- 27. Полевой транзистор с плавающим затвором.
- 28. МНОП (металл-нитрид-оксид-полупроводник) транзистор.
- 29. Оперативные запоминающие устройства.
- 30. Статические запоминающие устройства.
- 31. Динамические запоминающие устройства.
- 32. Запоминающие устройства с произвольной выборкой.
- 33. Микросхемы памяти в составе микропроцессорной системы.
- 34. Буферная память. Стековая память.
- 35. Архитектура микропроцессора і8086.
- 36. Регистровая модель і8086.
- 37. Форматы команд i8086.
- 38. Способы адресации i8086: непосредственная адресация, прямая адресация, регистровая адресация, косвенно-регистровая адресация, базовая адресация, индексная адресация, адресация базовая со смещением, адресация индексная со смещением, базово-индексная адресация, базово-индексная адресация со смещением.
 - 39. Модели памяти і8086.
 - 40. Ассемблер микропроцессора і8086.
 - 41. Система команд і 8086: команды пересылки, арифметические команды.
- 42. Система команд i8086: логические команды, команды передачи управления.
- 43. Система команд i8086: команды сравнения, команды организации циклов, команды ввода-вывода.
 - 44. Компиляция программ для і8086.
 - 45. Применение программ архитектуры х86 в современных платформах.
 - 46. Микропроцессор і80386. Регистровая модель і80386.
 - 47. Форматы команд і80386.
 - 48. Система команд і80386.
- 49. Способы адресации i80386. Базовая адресация с масштабированием. Индексная адресация с масштабированием.
- 50. Организация памяти i80386. Организация памяти i80386 в «реальном» режиме (real mode). Организация памяти i80386 в «защищенном» режиме (protected mode).
 - 51. Дескриптор. Состав дескриптора.
 - 52. Дескрипторная таблица. Виды дескрипторных таблиц.
 - 53. Скрытые регистры і80386.
 - 54. Страничная организация памяти.
 - 55. Защита памяти (уровни привилегий).
 - 56. Ассемблер і80386.
 - 57. Компиляция программ для і80386.
 - 58. Применение программ архитектуры х386 в современных платформах.
 - 59. Архитектура х64.
 - 60. Регистровая модель х64.

- 61. Многоядерная архитектура.
- 62. Архитектура арифметического сопроцессора i8087.
- 63. Регистровая модель і8087.
- 64. Система команд i8087.
- 65. Ассемблер i8087.
- 66. Компиляция программ под і8087.
- 67. Понятие Floating Point Unit (FPU).
- 68. Архитектура устройства SSE.
- 69. Регистровая модель SSE.
- 70. Система команд SSE.
- 71. Ассемблер SSE.
- 72. Компиляция программ под SSE.
- 73. Семейства микроконтроллеров AVR.
- 74. Технические характеристики микроконтроллеров AVR.
- 75. Периферийные устройства микроконтроллеров AVR.
- 76. Архитектура микроконтроллера AVR.
- 77. Микроконтроллер AVR. Память программ и стек. Память данных.
- 78. Микроконтроллер AVR. Регистры управления. Прерывания.
- 79. Ассемблер микроконтроллера AVR.
- 80. Система команд микроконтроллера AVR.
- 81. Интегрированная среда AVR Studio. Создание проекта на ассемблере. Компиляция программы для AVR-микроконтроллера. Отладка программы на ассемблере.
 - 82. Микроконтроллер AVR. Программирование таймеров.
 - 83. Микроконтроллер AVR. Использование EEPROM.
- 84. Микроконтроллер AVR. Программирование с использованием аналогового компаратора и аналого-цифрового преобразователя.
 - 85. Программная модель внешнего устройства.
- 86. Форматы передачи данных. Параллельная передача данных. Последовательная передача данных.
 - 87. Способы обмена информацией в микропроцессорной системе.
- 88. Использование микроконтроллеров для модернизации аналоговых блоков систем авиационного оборудования.
 - 89. Применение микропроцессоров в системах бортовых ЦВМ.

ПК-2.5

- 1. Понятие "тестирование программного обеспечения".
- 2. Понятие "тестировщик".
- 3. Навыки тестировщика.
- 4. Модели разработки программного обеспечения.
- 5. Жизненный цикл тестирования.
- 6. Основные принципы тестирования.
- 7. Тестирование документации и требований
- 8. Виды и направления тестирования.
- 9. Чек-лист, тест-кейс, наборы тест-кейсов.
- 10. Отчеты о дефектах.

3. Формы контроля

3.1. Формы текущего контроля

Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно при подготовке к лабораторным работам и на практических занятиях.

3.2. Формы промежуточного контроля

Форма промежуточного контроля по дисциплине – экзамен, защита курсовой работы.

3.3. Формы заключительного контроля

Форма заключительного контроля по дисциплине – экзамен, защита курсовой работы.

4. Бланк задания на курсовую работу

Срок представления КР к защите «______» 202_ г.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра автоматизированных систем управления

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

по дисциплине «Микропроцессоры в системах управления»

Студент (ка)	_ код	группа				
1. Тема проекта Реализация цифрового фильтра						
2. Тип фильтра. <u>Задается преподавателем</u> .						
3. Количество входных отсчетов. <u>Задается преподавателем</u> .						
4. Срок представления проекта к защите «» 202_ г.						
5. Средство реализации цифрового фильтра. Обосновывается студентом.						
6. Количество разрядов входных отсчетов. <u>Задается преподавателем</u> .						
7. Содержание пояснительной записки						
7.1. Аннотация.						
7.2. Введение.						
7.3. Теоретические сведения.						
7.4. Структурная схема фильтра.						
7.5. Выбор способа реализации фильтра.						
7.6. Обоснование инструментальных средств.						
7.7. Разработка алгоритмов. 7.8. Разработка программы.						
7.9. Анализ полученных результатов.						
7.10. Заключение.						
7.11. Список используемых источников.						
7.11. Chilcok heliosibs yembix helo minkob.						
Руководитель проекта	Челебаев С.В. «	» 202_ г.				
Задание принял к исполнению	<u> </u>	» 202_ г.				

5. Критерий допуска к экзамену

К экзамену допускаются студенты, защитившие ко дню проведения экзамена по расписанию экзаменационной сессии все лабораторные работы и практические работы.

Студенты, не защитившие ко дню проведения экзамена по расписанию экзаменационной сессии хотя бы одну лабораторную или практическую, на зачете с оценкой и экзамене получают неудовлетворительную оценку. Решение о повторном экзамене и сроках его последующего проведения принимает деканат.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ФГБОУ ВО "РГРТУ", РГРТУ, Холопов Сергей Иванович, Заведующий СОГЛАСОВАНО кафедрой АСУ

Простая подпись