МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Вычислительная и прикладная математика»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ «Дискретная математика»

Направление подготовки 09.03.04 «Программная инженерия»

Направленность (профиль) подготовки

«Программное обеспечение систем искусственного интеллекта»

Уровень подготовки – бакалавриат

Квалификация выпускника – бакалавр

Форма обучения – очная

Срок обучения – 4 года

Рязань 2021 г.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов и процедур, предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности компетенций и индикаторов их достижения, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости и промежуточная аттестация проводятся с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся на практических занятиях по результатам выполнения и защиты обучающимися индивидуальных заданий, по результатам выполнения контрольных работ и тестов, по результатам проверки качества конспектов лекций и иных материалов.

В качестве оценочных средств на протяжении семестра используется устные и письменные ответы студентов на индивидуальные вопросы, письменное тестирование по теоретическим разделам курса, реферат. Дополнительным средством оценки знаний и умений студентов является отчет о выполнении практических заданий и его защита.

По итогам курса обучающиеся сдают экзамен. Форма проведения — устный ответ с письменным подкреплением по утвержденным билетам, сформулированным с учетом содержания дисциплины. В билет для экзамена включается два теоретических вопроса и задача. В процессе подготовки к устному ответу студент должен составить в письменном виде план ответа.

1. Перечень компетенций с указанием этапов их формирования

При освоении дисциплины формируются следующие компетенции: ОПК-1 (индикаторы ОПК-1.1, ОПК-1.2), ОПК-3 (индикаторы ОПК-3.2).

Указанные компетенции формируются в соответствии со следующими этапами:

- формирование и развитие теоретических знаний, предусмотренных указанными компетенциями (лекционные занятия, самостоятельная работа студентов);
- приобретение и развитие практических умений предусмотренных компетенциями (практические занятия, самостоятельная работа студентов);
- закрепление теоретических знаний, умений и практических навыков, предусмотренных компетенциями, в ходе решения конкретных задач на занятиях, выполнения индивидуальных заданий на практических занятиях и их защиты, а так же в процессе сдачи экзамена.

2 Показатели и критерии оценивания компетенций (*результатов*) на различных этапах их формирования, описание шкал оценивания

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;

- продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

При достаточном качестве освоения более 80% приведенных знаний, умений и навыков преподаватель оценивает освоение данной компетенции в рамках настоящей дисциплины на эталонном уровне, при освоении более 60% приведенных знаний, умений и навыков — на продвинутом, при освоении более 40% приведенных знаний умений и навыков — на пороговом уровне. При освоении менее 40% приведенных знаний, умений и навыков компетенция в рамках настоящей дисциплины считается неосвоенной.

Уровень сформированности каждой компетенции на различных этапах ее формирования в процессе освоения данной дисциплины оценивается в ходе текущего контроля успеваемости и представлено различными видами оценочных средств.

Оценке сформированности в рамках данной дисциплины подлежат компетенции/индикаторы:

Показатели достижения планируемых результатов обучения и критерии их оценивания на разных уровнях формирования компетенций приведены в таблице 1.

Таблица 1. Показатели достижения индикаторов компетенции

1	2	3	4
Компетенция: код по	Индикаторы	Этап Наимено	
ФГОС 3++, формули-			вание оце-
ровка			ночного
OTH 1 C	OTHE 1.1 H		средства
ОПК-1 Способен при-	ОПК-1.1 Демонстрирует есте-		
менять естественнона- учные и общеинженер-	ственнонаучные и общеинженерные		
учные и оощеинженер-	знания, знания методов математиче-		
математического ана-	ского анализа и моделирования,		
лиза и моделирования,	теоретического и эксперименталь-		
теоретического и экс-	ного исследования;		
периментального ис- следования в профес- сиональной деятельно- сти	Знать: основные понятия естественно-		
	научных общеинженерных дисциплин:		
	математического анализа, аналитиче-		
	ской геометрии, линейной и векторной		
	алгебры, теории вероятностей и мате-	1, 2	Экзамен
	матической статистики, теории диф-	1, 2	Экзамен
	ференциальных уравнений, информа-		
	ционных технологий; основ общей фи-		
	зики.		
	<u>Уметь</u> : правильно и технически гра-		
	мотно поставить, и математически по-		
	яснить и решить конкретную задачу в		
	рассматриваемой области;		
	<u>Владеть</u> : естественнонаучным и об-		
	щеинженерными знаниями, знаниями		
	методов математического анализа и		
	моделирования, теоретического и экс-		

периментального исследования. ОПК-1.2 Применяет естественно- научные и общеинженерные знания,	
научные и общеинженерные знания.	
методы математического анализа и	
моделирования, теоретического и	
экспериментального исследования в	
профессиональной деятельности	
<u>Знать</u> : основы естественнонаучных и	
общеинженерных дисциплин, методы	
математического анализа и моделиро-	
вания, иметь опыт обработки экспери-	
ментальных данных математическими	
методами.	
<u>Уметь</u> : использовать навыки аналити-	
ческого и численного решения алгеб-	
раических и дифференциальных урав-	
нений и систем, методов математиче-	
ского анализа и моделирования в про-	
фессиональной деятельности.	
Владеть: и применять в профессио-	
нальной деятельности естественнона-	
учные и общеинженерные знания, ме-	
тоды математического анализа и моде-	
лирования, а также теоретического и	
экспериментального исследования.	
ОПК-3 Способен ре-	
шать стандартные за- дачи профессиональ-	
ной деятельности на Знать: информационно-	
основе информацион- коммуникационные технологии с уче-	Экзамен
ной и библиографиче- том основных требований информаци-	
онной безопасности.	
менением информаци- онно- Уметь: решать стандартные задачи на	
уоможниканионных основе информационной библиогра-	
технологии и с учетом фической культуры с применением	
основных требований информационно-коммуникационных	
информационной без- опасности; технологий и с учетом основных тре-	
бований информационной безопасно-	
сти.	
Владеть: основными требованиями	
информационной безопасности для	
решения профессиональных задач с	

1	2	3	4
	применением информационно-		
	коммуникационных технологий.		

Преподавателем оценивается содержательная сторона и качество материалов, приведенных в отчетах студента по практическим занятиям. Кроме того, преподавателем учитываются ответы студента на вопросы по соответствующим видам занятий при текущем контроле:

- контрольные опросы;
- задания для практических занятий.

Принимается во внимание знания обучающимися:

- информационно-коммуникационные технологии с учетом основных требований информационной безопасности;
- основы естественнонаучных и общеинженерных дисциплин, методы математического анализа и моделирования, иметь опыт обработки экспериментальных данных математическими методами;
- основные понятия естественнонаучных общеинженерных дисциплин: математического анализа, аналитической геометрии, линейной и векторной алгебры, теории вероятностей и математической статистики, теории дифференциальных уравнений, информационных технологий; основ общей физики.

наличие умений:

- решать стандартные задачи на основе информационной библиографической культуры с применением информационно-коммуникационных технологий и с учетом основных требований информационной безопасности;
- использовать навыки аналитического и численного решения алгебраических и дифференциальных уравнений и систем, методов математического анализа и моделирования в профессиональной деятельности;
- правильно и технически грамотно поставить, и математически пояснить и решить конкретную задачу в рассматриваемой области.

обладание навыками:

- информационной безопасности для решения профессиональных задач с применением информационно-коммуникационных технологий;
- естественнонаучных и общеинженерных знаний, методы математического анализа и моделирования, а также теоретического и экспериментального исследования;
- естественнонаучных и общеинженерных знаний, знаниями методов математического анализа и моделирования, теоретического и экспериментального исследования. Критерии оценивания уровня сформированности компетенции в процессе выполнения практических работ:
- 41%-60% правильных ответов соответствует пороговому уровню сформированности компетенции на данном этапе ее формирования;
- 61%-80% правильных ответов соответствует продвинутому уровню сформированности компетенции на данном этапе ее формирования;
- 81%-100% правильных ответов соответствует эталонному уровню сформированности компетенции на данном этапе ее формирования.

Сформированность уровня компетенций не ниже порогового является основанием для допуска обучающегося к промежуточной аттестации по данной дисциплине.

Формой промежуточной аттестации по данной дисциплине является экзамен, оцениваемый по принятой в ФГБОУ ВО «РГРТУ» четырехбалльной системе: «неудовлетворительно», «удовлетворительно», «хорошо» и «отлично».

Критерии оценивания промежуточной аттестации представлены в таблице.

Шкала оценивания	Критерии оценивания		
«отлично»	студент должен: продемонстрировать глубокое и прочное		
	усвоение знаний материала; исчерпывающе, последова-		
	тельно, грамотно и логически стройно изложить теорети-		
	ческий материал; правильно формулировать определения;		
	уметь сделать выводы по излагаемому материалу; без-		
	упречно ответить не только на вопросы билета, но и на до-		
	полнительные вопросы в рамках рабочей программы дис-		
	циплины; выполнить все практические задания, преду-		
	смотренные программой		
«хорошо»	студент должен: продемонстрировать достаточно полное		
	знание материала; продемонстрировать знание основных		
	теоретических понятий; достаточно последовательно, гра-		
	мотно и логически стройно излагать материал; уметь сде-		
	лать достаточно обоснованные выводы по излагаемому ма-		
	териалу; ответить на все вопросы билета; выполнить все		
	практические задания, предусмотренные программой.		
«удовлетворительно»	студент должен: продемонстрировать общее знание изу-		
	чаемого материала; знать основную рекомендуемую про-		
	граммой дисциплины учебную литературу; уметь строить		
	ответ в соответствии со структурой излагаемого вопроса;		
	показать общее владение понятийным аппаратом дисци-		
	плины; уметь устранить допущенные погрешности в ответе		
	на теоретические вопросы; выполнить все практические		
	задания, предусмотренные программой.		
«неудовлетворительно»	ставится в случае: невыполнения практических занятий;		
	незнания значительной части пройденного материала; не		
	владения понятийным аппаратом дисциплины; существен-		
	ных ошибок при изложении учебного материала; неумения		
	строить ответ в соответствии со структурой излагаемого		
	вопроса; неумения делать выводы по излагаемому матери-		
	алу. Как правило, оценка «неудовлетворительно» ставится		
	студентам, которые не могут продолжить обучение по об-		
	разовательной программе без дополнительных занятий по		
	соответствующей дисциплине (формирования и развития		
	компетенций, закрепленных за данной дисциплиной).		
	Оценка «неудовлетворительно» выставляется также, если		
	студент после начала экзамена отказался его сдавать или		
	нарушил правила сдачи экзамена (списывал, подсказывал,		
	обманом пытался получить более высокую оценку и т.д.).		

3. Типовые контрольные задания или иные материалы

ФОС по дисциплине содержит следующие оценочные средства, позволяющие оценить знания, умения и уровень приобретенных компетенций при текущем контроле и промежуточной аттестации, разбитые по модулям дисциплины:

- перечни экзаменационных вопросов;
- макеты билетов к экзамену.

Средства для оценки различных уровней формирования компетенций по категориям «знать», «уметь», «владеть» обеспечивают реализацию основных принципов контроля, таких, как объективность и независимость, практико-ориентированность, междисциплинарность.

С учетом этого, контрольные вопросы (задания, задачи,) входящие в ФОС, для различных категорий и уровней освоения компетенций имеют следующий вид:

Уровень ЗНАТЬ

Дескрипторы	Пример задания из оценочного средства		
Способен применять есте-	1. Дать определение операции объединения множеств.		
ственнонаучные и общеинже-	2. Сформулировать необходимые и достаточные условия антисимметричности.		
нерные знания, методы мате- матического анализа и моде-	 Как определяется композиция соответствий. 		
лирования, теоретического и	4. Дать определение идемпотентного полукольца.		
экспериментального исследо-	5. Дать определение цепи в неориентированном графе.		
вания в профессиональной	 Сформулировать теорему Поста. Сформулировать теорему о детерминизации. 		
деятельности	7. Сформулировать теорему о детерминизации.		

Уровень УМЕТЬ Дескрипторы Пример задания из оценочного средства Проверить тождество $A \setminus (A \setminus B) = A \cap B$, используя ме-Решать стандартные задачи тод характеристических функций. профессиональной деятельно-Для заданного на множестве $A=\{1, 2, 3, 4, 5\}$ бинарности на основе математичего отношения δ исследовать свойства (рефлексивской, информационной и библиографической культуры с ность, иррефлексивность, симметричность, антисимприменением информационметричность, транзитивность) бинарного отношения, но-коммуникационных техно- $\delta = \{(x, y): (x+y) \neq 0 \pmod{2}\}$ логий и с учетом основных 3. Для заданных на множестве $A=\{1, 2, 3, 4, 5\}$ бинарных требований информационной отношений ρ и τ построить графики и записать матрицы бинарных отношений. Найти композицию бинарбезопасности ных отношений ρ и τ , $\rho = \{(x, y): xy \le 8\}, \tau = \{(x, y): |x-y|\}$ ≤ 1 }. 4. В поле Z_7 решить систему уравнений $\begin{pmatrix} 4 & x_1 + 3 & x_2 - 2 & x_3 = 1 \end{pmatrix}$ $2x_2 = 3x_3$ $(3 x_1 4x_2)$ 5. Выполнить поиск в глубину в ориентированном графе из вершины V₁. Записать списки смежности. Вершины в списке смежности расположить в порядке возрастания номеров. Привести протокол работы алгоритма, указать D-номера вершин. Построить глубинное остовное дерево.

- 6. Минимизировать функцию f=(1110001111010001) с использованием карты Карно.
- 7. Детерминизировать конечный автомат автомат: $M = \{\{a,b\}, \{q_1, q_2,q_3\}, \{q_1\}, \{q_3\}, \delta(q_1,a) = \{q_1,q_3\}, \delta(q_1,b) = \{q_2\}, \delta(q_2,a) = \{q_1\}, \delta(q_2,b) = \{q_3\}, \delta(q_3,b) = \{q_1\}\}.$

Перечни вопросов к экзамену и макеты экзаменационного билета

- 1. Теорема о связи между отношением эквивалентности и разбиением множества (с доказательством).
- 2. Теорема о монотонности непрерывного отображения (с доказательством). Пример монотонного отображения, не являющегося непрерывным.
- 3. Неподвижная точка отображения. Теорема о неподвижной точке (с доказательством).
 - 4. Группа. Решение уравнений a*x=b и x*a=b в группе (G,*) (с док-вом).
- 5. Кольцо. Теорема о тождествах кольца (аннулирующем свойстве нуля, свойстве обратного по сложению при умножении, дистрибутивности вычитания относительно умножения) (с док-вом).
- 6. Область целостности. Теорема о конечной области целостности (с доказательством).
 - 7. Смежные классы подгруппы по элементу.
- 8. Отношение эквивалентности по равенству смежных классов (с док-вом свойств).
 - 9. Теорема о равномощности смежного класса подгруппе (с док-вом).
- 10. Теорема Лагранжа. Свойство группы простого порядка (с док-вом). Признак неразложимости конечной группы (с док-вом).
- 11. Полукольцо. Идемпотентное полукольцо. Примеры полуколец (с доказательством свойств).
- 12. Естественный порядок идемпотентного полукольца (с доказательством рефлексивности, антисимметричности и транзитивности). Примеры.
- 13. Теорема о точной верхней грани конечного подмножества идемпотентного полукольца (с док-вом).
- 14. Замкнутое полукольцо. Теорема о замкнутости конечного идемпотентного полукольца (с док-вом).
- 15. Непрерывность операции сложения в замкнутом полукольце (формулировка). Непрерывность линейного отображения у=а*x+b (доказательство).
- 16. Теорема о наименьшем решении линейного уравнения в замкнутом полукольце (с док-вом).
- 17. Решение систем линейных уравнений в замкнутых полукольцах. Метод последовательного исключения переменных.
- 18. Неориентированный граф, ребро, степень вершины неориентированного графа, цепь, простая цепь, цикл, подграф, остовный подграф, отношение достижимости в неориентированном графе, компонента связности в неориентированном графе;
- 19. Ориентированный граф, дуга, полустепень захода вершины ор. графа, полустепень исхода, степень вершины, путь, простой путь, контур, подграф, остовный подграф, ассоциированный неор. граф, отношение достижимости в ориентированном графе, бикомпонента, компонента, компонента слабой связности.
- 20. Поиск в ширину (алгоритм волнового фронта и поиск в размеченном орграфе).
 - 21. Поиск в глубину в неориентированном и в ориентированном графе.
- 22. Деревья. Бинарные деревья. Теорема о высоте полного бинарного дерева (с док-вом). Задача сортировки. Оценка сложности задачи сортировки.
 - 23. Алгоритм Дейкстры.
- 24. Ориентированный граф, взвешенный над полукольцом, метка дуги, метка пути, стоимость прохождения между парой вершин.
- 25. Задача о путях во взвешенных графах. Утверждение о вычислении стоимости прохождения по всем путям длины 1 (с доказательством).
 - 26. Полукольцо языков, его замкнутость (с доказательством выполнения

аксиом полукольца и доказательством замкнутости).

- 27. Регулярные языки. Индуктивная процедура порождения регулярных языков. Регулярные выражения. Полукольцо регулярных языков. Незамкнутость полукольца регулярных языка.
- 28. Конечные автоматы (КА). Представление автомата ориентированным графом, взвешенным над полукольцом регулярных языков. Нахождение языка, допускаемого КА.
 - 29. Теорема Клини (с доказательством).
- 30. Детерминизация конечных автоматов. Теорема о детерминизации (без доказательства). Алгоритм детерминизации.
- 31. Теорема о регулярности дополнения регулярного языка (с док-вом). Регулярность пересечения, разности и симметрической разности регулярных языков.
- 32. Конечные детерминированные автоматы, постановка задачи о минимизации, эквивалентные состояния, теорема о минимальном автомате.
- 33. Конечные автоматы с выходом, постановка задачи о минимизации, эквивалентные состояния, процедура построения минимального автомата.
- 34. Суперпозиции булевых функций. Формулы. Процесс построения формулы и его представление в виде ориентированного дерева. Подформулы. Функция, представляемая формулой.
- 35. Дизъюнктивные и конъюктивные нормальные формы. Совершенные конъюктивные и дизъюнктивные нормальные формы (СДНФ и СКНФ). Теорема о представлении булевой функции в виде СДНФ и СКНФ (с док-вом).
- 36. Полное множество булевых функций. Теорема о доказательстве полноты множества путем представления его элементов формулами над полным множеством.
- 37. Базис Жегалкина и его полнота. Полином Жегалкина. Теорема о единственности полинома Жегалкина для каждой булевой функции (с док-вом).
- 38. Классы Поста. Примеры. Теорема о замкнутости классов Поста (с док-вом).
- 39. Утверждение о возможности получить константы из несамодвойственной функции (с док-вом).
- 40. Утверждение о возможности получить отрицание из немонотонной функции.
- 41. Утверждение о возможности получить конъюнкцию из нелинейной функции (с док-вом).
- 42. Критерий полноты системы булевых функций (теорема Поста) (с док-вом).
 - 43. Вывод формул включения и исключения .
- 44. Однородные линейные рекуррентные соотношения. Доказательство теоремы о структуре общего решения (любое решение есть линейная комбинация фундаментальных решений).
 - 45. Лемма Бернсайда (с доказательством).
 - 46. Цикловой индекс группы. Формулировка теоремы Пойа.

Макет экзаменационного билета

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Рязанский государственный радиотехнический университет» (РГРТУ)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №1 по дисциплине «**Дискретная математика**»

- 1. Вывод формул включения и исключения.
- 2. Теорема о регулярности дополнения регулярного языка (с док-вом). Регулярность пересечения, разности и симметрической разности регулярных языков.
- 3. Решение систем линейных уравнений в замкнутых полукольцах. Метод последовательного исключения переменных.

Билет	рассмотрен и	утвержден	на заседании ка	федры «	>>	20 г.
	person person	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1100 0000 0 0001111111 110	тф - ДР <i>-</i> - ::		