ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ «МЕТОДЫ ОПТИМИЗАЦИИ РЕЖИМОВ РАБОТЫ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ»

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях; по результатам выполнения работы; по результатам выполнения обучающимися индивидуальных заданий; по результатам проверки качества конспектов лекций и иных материалов. При оценивании (определении) результатов освоения дисциплины применяется традиционная система (зачтено, незачтено).

В случае, если студент не выполнил расчетные задания, предусмотренные учебным графиком выставляется оценка незачтено.

В качестве оценочных средств на протяжении семестра используется компьютерное тестирование.

По итогам курса обучающиеся сдают зачет. Форма проведения очная – устный ответ, по утвержденным билетам, сформулированным с учетом содержания учебной дисциплины.

Паспорт фонда оценочных средств по дисциплине (модулю)

		Код	Наименова
		контролируемой	ние
		компетенции (или её части)	оценочного средства
1	Параметры режима электрической сети. Особенности расчета, режима распределительных сетей.	ПК-2.1, ПК-2.2, ПК-3.1	Зачет
2	Расчеты режима простых замкнутых электрических сетей.	ПК-2.1, ПК-2.2, ПК-3.1	Зачет
3	Методы расчета потерь электроэнергии и мощности.	ПК-2.1, ПК-2.2, ПК-3.1	Зачет

	Задачи регулирования напряжения в электрических сетях. Современные технические средства регулирования напряжения		Зачет
5	Управление режимами электроэнергетических систем. Оптимизация режимов электрических станций совместно с режимами электрических сетей		Зачет
6	Устойчивость параллельной работы электрической станции с электрической системой.	ПК-2.1, ПК-2.2, ПК-3.1	Зачет

6.2. Типовые контрольные задания или иные материалы

6.2.1. Зачет

а) типовые вопросы (задания)

No	Вопрос			
1	Задачи, назначение, классификация электрических сетей и систем потребителей			
2	Современное состояние и перспективы развития электрических сетей и систем			
	потребителей.			
3	Отличия в решении задачи регулирования напряжения в питающих и			
	распределительных сетях.			
4	Регулирование напряжения при установке на подстанции источника реактивной			
	мощности.			
5	Экономическая задача регулирования напряжения.			
6	Особенности обеспечения электрической энергией потребителей предприятия.			
	Обобщенные статические характеристики комплексной нагрузки.			
7	Цель и исходные данные при выполнении механических расчетов воздушных линий.			
8	Расчетные климатические условия электрических сетей. Нагрузки на провода,			
	принимаемые при расчетах проводов воздушных линий.			
9	Особенности расчета механических напряжений, возникающих в проводах воздушных			
	линий.			
10	Обобщенные узловые и контурные параметры электрической сети, их свойства,			
	способы определения.			
11	Особенности расчета электрических сетей с двумя источниками питания.			
12				
	Выбор сечения проводов в питающих и распределительных сетях.			
13	Сущность и особенности метода расчета режима разомкнутой и кольцевой сети.			
14	Мероприятия по улучшению качества электроэнергии. Контроль показателей качества.			
15	Учет временного фактора при моделировании воздушной линии электрической сети			
16	Моделирование электрических сетей с учетом допустимого тока по условиям нагрева.			
17	Установившиеся режимы. Расчет сетей по экономическим показателям.			
18	Выбор сечения кабельных линий напряжением до 1000 В, промышленных предприятий,			
	в сетях жилых и общественных зданий.			
19	Параметры режима работы электрических сетей, параметры схемы замещения.			
20	Преимущества сетей постоянного тока. Расчет сетей постоянного тока.			
21	Расщепление фазы линии. Схемы замещения линии. Изменение схемы замещения в			
	зависимости от длины.			
22	Схема замещения трансформатора. Определение активных сопротивлений в схеме			
22	замещения трехобмоточного трансформатора.			
23	Определение индуктивных сопротивлений фаз при симметричном их расположении.			
24	Потери электроэнергии в сетях обеспечения потребителей. Потери мощности в линиях			
	электропередачи и трансформаторах, мероприятия по снижению потерь.			

25	Влияние емкостной проводимости на величину потерь мощности в линии. Влияние
	компенсации реактивной мощности нагрузки на потери мощности в сети.
26	Регулирование напряжения на приемном конце электропередачи.
	Предельная мощность.
27	Однородные сети. Свойства однородных сетей. Устойчивость параллельной работы
	электрической станции с электрической системой.
28	Оптимизация режимов электрических станций совместно с режимами электрических
	сетей.
29	Различия в распределении токов и напряжений в коротких и длинных линиях.
	Ограниченность дальности передачи по линии переменного тока.
30	Регулируемые узлы в электрических сетях. Требования, предъявляемые к этим узлам.
	Ускоряющие коэффициенты.

б) критерии оценивания компетенций (результатов)

- 1). Уровень усвоения материала, предусмотренного программой.
- 2). Умение анализировать материал, устанавливать причинно-следственные связи.
- 3). Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4). Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция)
- 5). Использование дополнительной литературы при подготовке ответов.

в) Шкала оценивания для оформления итоговой оценки по дисциплине

Оценка	Определение оценки
Зачтено	Понимание предмета, всесторонние знания, умения и владения
Незачтено	Результаты обучения не соответствуют минимальным требованиям

б) критерии оценивания компетенций (результатов)

Критерием оценки при защите курсового проекта является уровень проведенного исследования, владения теоретическими и практическими знаниями, а также следующие моменты:

- при постановке задачи подробно описана область проводимых исследований, основные задачи электрических сетей и систем, обосновано использование методов для решения поставленных задач;
 - построена структурная модель по исходным данным;
- реализованы инструментальные средства редактирования, визуализации данных, решения поставленных задач;
 - квалифицированно описаны полученные результаты.

Учитываются:

- обоснованность выбора моделей и методов оптимизации режимов электрических сетей и систем;
 - построение эффективной структурной модели электрических сетей и систем;
 - использование современных программных средств.