ПРИЛОЖЕНИЕ 1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра радиотехнических систем

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Проектирование средств РЭБ на ПЛИС»

Специальность – 11.05.01 «Радиоэлектронные системы и комплексы»

ОПОП специалитета «Радиоэлектронная борьба»

Квалификация выпускника – инженер Форма обучения – очная Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

Одна из форм текущего контроля успеваемости - промежуточное тестирование обучающихся по пройденному лекционному материалу.

К контролю текущей успеваемости также относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена.

Форма проведения экзамена — письменный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса и одна задача. После выполнения письменной работы обучаемым производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения экзаменационной оценки.

Паспорт оценочных материалов по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируе- мой компетенции (или ее части)	Вид, метод, форма оценоч- ного мероприя- тия
1	2	3	4
1	Введение. Схемотехническая реализация программируемой логики.	ПК-4.1, ПК-4.2	Экзамен
2	Структура проекта на языке VHDL.	ПК-4.1, ПК-4.2	Экзамен
3	Синтез комбинационных цифровых устройств на языке VHDL.	ПК-4.1, ПК-4.2	Экзамен
4	Синтез последовательностных цифровых устройств на языке VHDL. Часть 1.	ПК-4.1, ПК-4.2	Экзамен
5	Синтез последовательностных цифровых устройств на языке VHDL. Часть 2.	ПК-4.1, ПК-4.2	Экзамен
6	Последовательные и параллельные операторы VHDL.	ПК-4.1, ПК-4.2	Экзамен
7	Синтез устройств на основе счетчиков и сдвиговых регистров. Часть 1.	ПК-4.1, ПК-4.2	Экзамен
8	Синтез устройств на основе счетчиков и сдвиговых регистров. Часть 2.	ПК-4.1, ПК-4.2	Экзамен
9	Синтез цифровых фильтров для подавления радиолокационных помех.	ПК-4.1, ПК-4.2	Экзамен
10	Синтез цифровых конечных автоматов на языке VHDL.	ПК-4.1, ПК-4.2	Экзамен
11	Синтез кодеров и декодеров помехоустойчивых кодов.	ПК-4.1, ПК-4.2	Экзамен
12	Конвейерная обработка данных в ПЛИС.	ПК-4.1, ПК-4.2	Экзамен
13	Современные протоколы передачи данных и их реализация на ПЛИС.	ПК-4.1, ПК-4.2	Экзамен
14	Чтение данных с аналого-цифрового преобразователя (АЦП) AD7705.	ПК-4.1, ПК-4.2	Экзамен

Критерии оценивания уровня сформированности компетенций в процессе выполнения лабораторных работ и практических занятий:

- 41%-60% правильных ответов соответствует пороговому уровню сформированности компетенции на данном этапе ее формирования;
- 61%-80% правильных ответов соответствует продвинутому уровню сформированности компетенции на данном этапе ее формирования;
- 81%-100% правильных ответов соответствует эталонному уровню сформированности компетенции на данном этапе ее формирования.

Сформированность уровня компетенций не ниже порогового является основанием для допуска обучающегося к промежуточной аттестации по данной

дисциплине.

Формой промежуточной аттестации по данной дисциплине является экзамен, оцениваемый по принятой в ФГБОУ ВО «РГРТУ» четырехбалльной системе: «неудовлетворительно», «удовлетворительно», «хорошо» и «отлично».

Критерии оценивания текущей успеваемости и промежуточной аттестации представлены в таблице 1.

Таблица 1 Критерии оценивания текущей успеваемости (лабораторные и практические занятия) и промежуточной аттестации (экзамен)

Шкала оценивания	Критерии оценивания
«зачтено»	студент должен: продемонстрировать общее знание
	изучаемого материала; знать основную рекомендуемую
	программой дисциплины учебную литературу; уметь
	строить ответ в соответствии со структурой излагаемого
	вопроса; показать общее владение понятийным
	аппаратом дисциплины; уметь устранить допущенные
	погрешности в ответе на теоретические вопросы и/или
	при выполнении практических заданий под руководством
	преподавателя, либо (при неправильном выполнении
	практического задания) по указанию преподавателя
	выполнить другие практические задания того же раздела
	дисциплины.
«не зачтено»	ставится в случае: незнания значительной части
	программного материала; не владения понятийным
	аппаратом дисциплины; существенных ошибок при
	изложении учебного материала; неумения строить ответ в соответствии со структурой излагаемого вопроса;
	неумения делать выводы по излагаемому материалу.
	Оценка «не зачтено» также ставится студентам, которые
	не выполнили и защитили лабораторные работы и
	практические занятия, предусмотренные рабочей
	программой.
«отлично»	«Отлично» заслуживает студент, обнаруживший
	всестороннее, систематическое и глубокое знание
	учебно-программного материала, умение свободно
	выполнять задания, предусмотренные программой,
	усвоивший основную и знакомый с дополнительной
	литературой, рекомендованной программой. Как правило,
	оценка «отлично» выставляется студентам, усвоившим
	взаимосвязь основных понятий дисциплины в их
	значении для приобретаемой профессии, проявившим

	творческие способности в понимании, изложении и
	использовании учебно-программного материала.
«хорошо»	«Хорошо» заслуживает студент, обнаруживший полное
	знание учебно-программного материала, успешно
	выполняющий предусмотренные в программе задания,
	усвоивший основную литературу, рекомендованную в
	программе. Как правило, оценка «хорошо» выставляется
	студентам, показавшим систематический характер знаний
	по дисциплине и способным к их самостоятельному
	пополнению и обновлению в ходе дальнейшей учебной
	работы и профессиональной деятельности.
«удовлетворительно»	«Удовлетворительно» заслуживает студент,
	обнаруживший знания основного учебно-программного
	материала в объеме, необходимом для дальнейшей учебы
	и предстоящей работы по специальности, справляющийся
	с выполнением заданий, предусмотренных программой,
	знакомый с основной литературой, рекомендованной
	программой. Как правило, оценка «удовлетворительно»
	выставляется студентам, допустившим погрешности в
	ответе на экзамене и при выполнении экзаменационных
	заданий, но обладающим необходимыми знаниями для их
	устранения под руководством преподавателя.
«не	«Неудовлетворительно» выставляется студенту,
удовлетворительно»	обнаружившему пробелы в знаниях основного учебно-
	программного материала, допустившему
	принципиальные ошибки в выполнении
	предусмотренных программой заданий. Как правило,
	оценка «неудовлетворительно» ставится студентам,
	которые не могут продолжить обучение или приступить к
	профессиональной деятельности по окончании вуза без
	дополнительных занятий по соответствующей
	дисциплине.

Темы лабораторных работ

- 1. Знакомство с САПР Quartus II. Синтез мультиплексора и семисегментного индикатора.
- 2. Синтез последовательностных цифровых устройств.
- 3. Применение ПЛИС для борьбы с помехами: генератор М-последовательности, фильтр череспериодной компенсации.
- 4. Синтез кодера и декодера кодов Хемминга.
- 5. Синтез цифрового КИХ фильтра на языке VHDL.

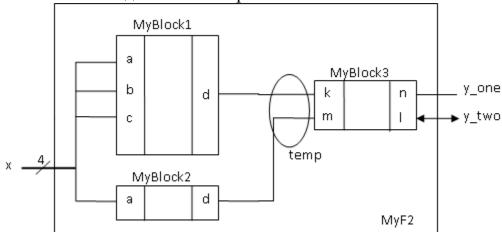
6. Изучение протокола передачи данных SPI.

Контрольные вопросы для защиты лабораторных работ

- 1. Основные элементы и конструкции языка VHDL. Ключевые слова. Идентификаторы. Комментарии. Числа. Строки бит.
- 2. Классификация типов данных в языке VHDL. Основные встроенные типы данных языка VHDL. Понятие подтипа. Пакет std_logic_1164.
- 3. Библиотеки и пакеты в языке VHDL. Пользовательские пакеты.
- 4. Интерфейс (сущность) и архитектура объекта в языке VHDL.
- 5. Декларации. Константы в языке VHDL. Глобальные константы. Локальные константы. Настроечная константа GENERIC. Сигналы. Переменные. Присвоение значения переменной и сигналу в языке VHDL. Имя с индексом. Имя-вырезка.
- 6. Процессы в языке VHDL.
- 7. Операции языка VHDL.
- 8. Стили программирования на VHDL. Поведенческий стиль, стиль потоков данных, структурный стиль.
- 9. Оператор COMPONENT. Операторы GENERIC MAP и PORT MAP. Способы подключения портов компонента.
- 10.Последовательные операторы. Оператор IF. Оператор CASE. Оператор NULL. Операторы циклов FOR LOOP и WHILE LOOP. Оператор завершения цикла EXIT.
- 11. Параллельные операторы. Агрегат. Оператор селективного присвоения WITH ... SELECT. Оператор условного назначения сигнала.
- 12. Массивы и записи в языке VHDL.
- 13. Функции в языке VHDL. Функции преобразования типов данных. Пользовательские функции.
- 14.Описание фронта тактового сигнала на языке VHDL. Атрибуты. Синхронные и асинхронные операции в последовательностных цифровых устройствах.
- 15. Конвейерная обработка данных в ПЛИС.
- 16.Описание цифровых конечных автоматов на языке VHDL. Демонстрация графа состояний ЦКА в САПР Quartus II.
- 17. Структура проекта на VHDL. Создание проекта в САПР Quartus II. Отладка VHDL-описаний. Демонстрация структурной схемы проекта средствами САПР Quartus II. Определение максимальной тактовой частоты и времени задержки прохождения сигнала через синтезируемое цифровое устройство средствами САПР Quartus II. Моделирование работы проекта в САПР Quartus II. Подключение отладочного макета и демонстрация работы проекта.
- 18. Описание на языке VHDL и демонстрация работы мультиплексора.
- 19.Описание на языке VHDL и демонстрация работы семисегментного

- индикатора.
- 20.Описание на языке VHDL и демонстрация работы шифратора, приоритетного шифратора, дешифратора.
- 21. Описание на языке VHDL и демонстрация работы компаратора.
- 22. Описание на языке VHDL и демонстрация работы устройства определения количества нулей и/или единиц во входном коде.
- 23. Описание на языке VHDL и демонстрация работы устройства определения чётности/нечётности/кратности входного кода.
- 24. Описание на языке VHDL и демонстрация работы D-триггера.
- 25.Описание на языке VHDL и демонстрация работы N-разрядного параллельного регистра.
- 26.Описание на языке VHDL и демонстрация работы суммирующего/вычитающего/реверсивного счётчика.
- 27. Описание на языке VHDL и демонстрация работы делителя частоты.
- 28.Описание на языке VHDL и демонстрация работы ШИМ-модулятора.
- 29.Описание на языке VHDL и демонстрация работы сторожевого таймера Watch-Dog.
- 30.Описание на языке VHDL и демонстрация работы последовательного Nразрядного регистра.
- 31.Описание на языке VHDL и демонстрация работы генератора Мпоследовательности по заданному характеристическому полиному. Реализация генератора М-последовательности с помощью сигнала и с помощью переменной.
- 32. Описание на языке VHDL и демонстрация работы обнаружителя семиэлементной М-последовательности на основе согласованного фильтра.
- 33.Описание на языке VHDL и демонстрация работы фильтра череспериодной компенсации n-го порядка.
- 34. Описание на языке VHDL и демонстрация работы цифрового КИХ фильтра n-го порядка.
- 35.Описание на языке VHDL и демонстрация работы кодера и декодера кодов Хемминга. Анализ функциональных схем синтезируемых цифровых устройств. Анализ быстродействия различных конвейерных реализаций декодера кода Хемминга.
- 36.Описание на языке VHDL цифрового конечного автомата (ЦКА) для обмена данными по протоколу SPI на примере аналого-цифрового преобразователя (АЦП) AD7705.

Темы практических занятий

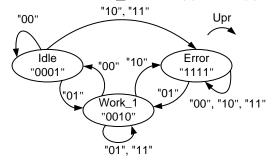

- 1. Составление VHDL-описания сущности на языке VHDL.
- 2. Сигналы и компоненты. Составление программы с применением структурного стиля программирования.
- 3. Синхронные и асинхронные операции в последовательностных

цифровых устройствах.

- 4. Синтез параметрических счетчиков.
- 5. Параллельное и каскадное подключение нескольких однотипных компонентов к проекту верхнего уровня.
- 6. Синтез генератора М-последовательности с входами управления.
- 7. Цифровые конечные автоматы.
- 8. Кодеры и декодеры помехоустойчивых кодов.
- 9. Пользовательские пакеты и функции в языке VHDL.
- 10.Составление управляющих байтов для записи в регистры управления AD7705.

Примеры задач для практических занятий

1. Составить описание на языке VHDL цифрового устройства **с помощью структурного стиля программирования**. При подключении компонентов в содержательной части архитектуры применить и позиционное и поименованное подключение портов.



- 2. Составить описание на языке VHDL **D-триггера** с входами асинхронной установки *Set* и синхронного сброса *Reset*.
- 3. Составить описание на языке VHDL параллельного N-разрядного регистра с входом синхронного сброса Reset (активное значение высокий логический уровень). Параметр N=10 определить как глобальную константу, которая задается в пакете. Работа устройства происходит по заднему фронту тактового импульса.
- 4. Составить описание на языке VHDL **суммирующего счетчика** с входом асинхронного сброса *Reset* (активное значение низкий логический уровень, по которому счетчик принимает минимальное значение) и входом тактовых импульсов *clk* (счётчик меняет своё состояние по переднему фронту тактового импульса). Модуль счета $K_{cq} = 12$.
- 5. Составить описание на языке VHDL **архитектуры** делителя частоты с коэффициентом деления 128, используя **только** существующий модуль делителя частоты с фиксированным коэффициентом деления 2, описание

которого имеет вид:

```
entity Div_freq_2 is port (c_in: in std_logic; -- входной сигнал clk: out std_logic -- выходной сигнал); end Div_freq;
```

- 6. Составить описание на языке VHDL последовательного *N*-разрядного регистра с входом асинхронного сброса *Reset* (активное значение высокий логический уровень). Параметр *N* определить как настроечную константу *Generic*. В качестве выходных портов определить параллельный код (содержимое всего регистра) и бит из последнего триггера регистра.
- 7. Составить описание на языке VHDL генератора М-последовательности с порождающим полиномом $P(x) = 1 + x + x^3$ с входом разрешения асинхронной параллельной загрузки Load (активное значение высокий логический уровень) стартовой комбинации $Start_data$. Стартовую комбинацию $Start_data$ подавать на отдельный входной порт. Работу устройства организовать по переднему фронту тактовых импульсов clk.
- 8. Составить описание на языке VHDL **цифрового автомата** с тактовым сигналом *clk*, входным двухразрядным логическим сигналом *Upr*, выходным четырехразрядным сигналом *Data_out* и заданной диаграммой состояний.

9. Составить описание на языке VHDL цифрового автомата, описывающего 3-разрядный счетчик кода Грея с выходными сигналами $000->001->011->111->110->100->000->\dots$ и входом асинхронного сброса *reset*.

Вопросы к экзамену

- 1. Лексические элементы языка VHDL
- 2. Типы данных в VHDL. Функции преобразования типа
- 3. Тип std_logic
- 4. Объекты VHDL. Описание сущности
- 5. Архитектура объекта в VHDL
- 6. Сигналы и процессы
- 7. Операции в языке VHDL. Приоритет операций

- 8. Структурный стиль описания объектов. Подключение проекта к проекту верхнего уровня. Позиционное и поименованное присвоение
- 9. Агрегат. Имя с индексом и имя-вырезка
- 10. Переменные в VHDL. Разница между переменной и сигналом
- 11. Пакеты в VHDL. Подключение пакета к проекту.
- 12. Константы в VHDL. Настроечная константа GENERIC. Описание сущности с настроечной константой.
- 13.Операторы If и Case
- 14. Операторы цикла For...Loop и While...Loop, оператор Exit
- 15.Параллельные операторы языка VHDL (With...Select, оператор условного назначения сигнала, оператор генерации Generate)
- 16. Функции в VHDL
- 17. Массивы и записи в языке VHDL
- 18.Описание фронта тактового сигнала на языке VHDL. Управляющие сигналы. Синхронные и асинхронные действия.
- 19. Цифровые автоматы и их описание с использованием операторов процесса. Описание автомата с использованием графа (диаграммы состояний).
- 20. Цифровые автоматы и их описание с использованием операторов процесса. Описание автомата с помощью совмещённой таблицы переходов и выходов.
- 21. Конвейерная обработка на ПЛИС
- 22. Архитектура ПЛИС типов CPLD и FPGA. Преимущества и недостатки
- 23.Интерфейс JTAG
- 24. Протокол RS-232. Основные характеристики. Чётность. Временная диаграмма сигнала в линии при передаче байта данных.
- 25.Протокол RS-485. Основные характеристики. Шина данных RS-485. Подключение устройств к шине RS-485.
- 26.Протокол SPI. Основные характеристики. Подключение устройств к шине SPI. Режимы работы интерфейса SPI.
- 27. Протокол SPI. Основные характеристики. Приём и передача данных по протоколу SPI.
- 28.Протокол 1-Wire. Основные характеристики. Нормальное и паразитное питание. Подключение устройств к шине 1-Wire
- 29. Импульсы RESET и PRESENCE протокола 1-Wire. Тайм-слоты передачи.
- 30.Импульсы RESET и PRESENCE протокола 1-Wire. Тайм-слоты приёма.

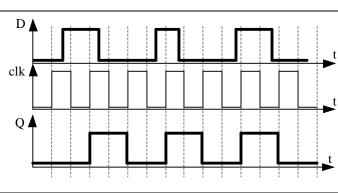
Темы задач к экзамену

- 1. Сигналы и компоненты (Структурный стиль описания объектов)
- 2. Процессы. Синхронные и асинхронные операции (D-триггер, N-разрядный параллельный регистр, Счётчик, Сторожевой таймер)
- 3. Генераторы М-последовательностей (Последовательный N-разрядный регистр, Генератор М-последовательности)

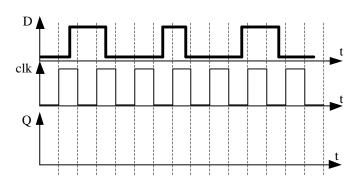
- 4. Параллельный оператор Generate (Подключение компонентов при помощи оператора Generate)
- 5. Кодеры и декодеры помехоустойчивых кодов (Кодер и декодер кода Хемминга)
- 6. Шифратор, дешифратор
- 7. Делитель частоты, ШИМ-модулятор
- 8. Цифровые конечные автоматы

Контрольные вопросы для оценки сформированности компетенций

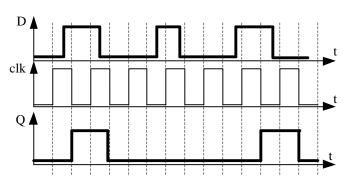
- 1. Разрешенные идентификаторы в VHDL.
- 2. Тип std_logic.
- 3. Объявление сущности в VHDL.
- 4. Настроечные константы в VHDL.
- 5. Описание архитектуры в VHDL.
- 6. Какие элементы объявляются в декларативной части архитектуры программы?
- 7. Сигналы в VHDL.
- 8. Процессы в VHDL.
- 9. Какие элементы объявляются в декларативной части процесса?
- 10. Можно ли объявить внутри процесса сигнал? Почему?
- 11. Можно ли объявить внутри процесса другой процесс? Почему?
- 12. Поименованное и позиционное подключение портов компонента.
- 13. Последовательные операторы языка VHDL.
- 14. Параллельные операторы языка VHDL.
- 15. Синхронные и асинхронные действия.
- 16. Описание триггеров и регистров на языке VHDL.
- 17. Пакеты в VHDL.
- 18. Массивы и записи в VHDL.
- 19. Цифровые автоматы Мура и Мили.


	Контрольные задания для оценки остаточных знании по предмету
1.	Выберите все возможные идентификаторы в языке VHDL:
	1. My_Logic
	2. 2Trig
	3. ТеМР_Щ
	4. TeMp12
	5. entity
	6. automat_12
	Номера правильных ответов: <u>1 4 6</u>

2.	Выберите все возможные идентификаторы в языке VHDL:
	1. константа
	2. VHDL_1
	3. Count111
	4. out
	5my_auto
	6. MUX
	Номера правильных ответов: _2_3_6
3.	Выберите все возможные идентификаторы в языке VHDL:
	1. Zadacha_6
	2. inout
	3. architecture
	4. Clk
	5. Segment7
	6. 22mux
	Номера правильных ответов: 1_4_5
4.	Какой перечисляемый тип данных используется для описания входных и
	выходных одноразрядных сигналов, проектируемого на языке VHDL,
	цифрового устройства?
	Hannary was among and looks
	Правильный ответ: std_logic
5.	Какой перечисляемый тип данных используется для описания входных и
	выходных многоразрядных сигналов, проектируемого на языке VHDL,
	цифрового устройства?
	Правильный ответ: std_logic_vector
6.	О каком понятии идёт речь? «Описывает внешний интерфейс объекта
	(моделирует взгляд на устройство <i>«снаружи»</i>) и содержит описание
	входных и выходных сигналов – портов»
	Правильный(ые) ответ(ы): Сущность/Сущность объекта/Entity
7.	Какое ключевое слово используется для определения сущности объекта в
	языке VHDL?
	Правильный ответ: entity


8.	Какое ключевое слово используется для определения настроечных констант в языке VHDL?
	Правильный ответ: generic
9.	О каком понятии идёт речь? «Определяет логику работы проектируемого цифрового устройства и форму её реализации (моделирует взгляд на объект «изнутри»)»
	Правильный(ые) ответ(ы): Архитектура/Архитектура объекта/Architecture
10.	Какое ключевое слово используется для определения архитектуры объекта в языке VHDL?
	Правильный ответ: architecture
11.	Выберите правильный ответ: Декларативная часть архитектуры HE может содержать объявление: 1. Сигнала 2. Переменной 3. Константы 4. Компонента
	Правильный ответ: 2
12.	О каком понятии идёт речь? «Это элемент языка VHDL, который переносит значение от одного объекта или процесса к другому объекту или процессу и вместе с ним синхронизирующее воздействие»
	Правильный(ые) ответ(ы): Сигнал/Signal
13.	Какое ключевое слово используется в языке VHDL для объявления сигнала? 1. entity 2. architecture 3. begin 4. signal 5. variable 6. constant
	Номер правильного ответа: $_{\underline{4}}$
14.	О каком понятии идёт речь? «Это основной параллельный оператор языка VHDL, который используется для поведенческой формы описания проектов»
	Правильный(ые) ответ(ы): Процесс/Process

15.	Выберите правильный ответ:
	Декларативная часть процесса НЕ может содержать объявление:
	1. Сигнала
	2. Переменной
	3. Константы
	4. Функции
	Правильный ответ: 1
16.	Какой оператор языка VHDL предназначен для последовательного выбора
	вариантов?
	1. if
	2. case
	3. for loop
	4. port map
	5. component
	6. <= (ПУ3C)
	Правильный ответ: 1
17.	Какой оператор языка VHDL предназначен для множественного выбора?
	1. if
	2. case
	3. for loop
	4. port map
	5. component
	$6. <= (\Pi V3C)$
	Правильный ответ: 2
18.	Какой оператор языка VHDL необходим для присвоения значения сигналу?
	1. if
	2. case
	3. for loop
	4. port map
	5. component
	6. <= (ПУЗС)
	Правильный ответ: 6


19. Какой оператор языка VHDL используется для объявления экземпляров объектов нижнего уровня, из которых состоит проект верхнего уровня? 1. if 2. case 3. for loop 4. port map 5. component 6. <= (ПУЗС) Правильный ответ: 5 Какой оператор языка VHDL необходим для реализации межкомпонентных 20. связей в проекте структурной формы? 1. if 2. case 3. for loop 4. port map 5. component 6. $<= (\Pi Y 3C)$ Правильный ответ: 4 Какая конструкция в языке VHDL используется для описания переднего 21. фронта тактового сигнала clock? Правильный ответ: clock'event and clock = '1' 22. Какая конструкция в языке VHDL используется для описания заднего фронта тактового сигнала clk? Правильный ответ: clk'event and clk = '0'23. Изобразите временную диаграмму процесса на выходе **D-триггера**, работающего по переднему фронту тактового сигнала: D clk Q 🌢 Правильный ответ:

24. Изобразите временную диаграмму процесса **на выходе D-триггера**, работающего **по заднему фронту** тактового сигнала:

Правильный ответ:

25. Каким термином в языке VHDL называют действие, происходящее по фронту таксового сигнала?

Правильный ответ: синхронное

26. Каким термином в языке VHDL называют действие, происходящее независимо от прихода фронта тактового сигнала?

Правильный ответ: асинхронное

- 27. Какой пакет необходимо подключить к проекту для возможности использования арифметических операций?
 - 1. std_logic_1164
 - 2. std_logic_arith

	3. std_logic_signed
	4. std_logic_unsigned
	Правильный ответ: 2
28.	Какой пакет необходимо подключить к проекту для возможности
	использования типов данных std_logic и std_logic_vector?
	1. std_logic_1164
	2. std_logic_arith
	3. std_logic_signed
	4. std_logic_unsigned
	Правильный ответ: 1
29.	Какой пакет необходимо подключить к проекту для возможности
	использования функций преобразования типов и чисел со знаком?
	1. std_logic_1164
	2. std_logic_arith
	3. std_logic_signed
	4. std_logic_unsigned
	П
20	Правильный ответ: 3
30.	Какой пакет необходимо подключить к проекту для возможности
	использования функций преобразования типов и чисел без знака?
	1. std_logic_1164
	2. std_logic_arith
	3. std_logic_signed
	4. std_logic_unsigned
	Правильный ответ: 4
i	TIPODINIDITI OTDET. T

Составил

Ст.преподаватель кафедры РТС

/ Т.С. Кислицына