ПРИЛОЖЕНИЕ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Телекоммуникаций и основ радиотехники»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Б1.В.17 «Основы цифровой модуляции и кодирования»

Направление подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи»

Направленность (профиль) подготовки «Программно-конфигурируемые беспроводные инфокоммуникационные системы и сети»

Уровень подготовки Бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – очная

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено – не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Итоговый контроль по дисциплине осуществляется проведением зачёта в 6 семестре.

Форма проведения зачёта — письменный ответ по утвержденным билетам, сформулированным с учетом содержания учебной дисциплины. В билет включается два теоретических вопроса. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения итоговой оценки.

Паспорт фонда оценочных средств по дисциплине

№ п/п	Контролируемые разделы (темы) дис- циплины (результаты по разделам)	Код контролируемой компе-	форма оце-
		тенции (или ее	ночного ме-
		части)	роприятия
1	2	3	4
1	Введение и основные положения по дисци-	ПК-2.2	зачёт
	плине		
2	Форматирование данных	ПК-2.2	зачёт
3	Модуляция базовых сигналов	ПК-2,2	зачёт
4	Демодуляция и детектирование базовых сиг-	ПК-2.2	зачёт
	налов		
5	Модуляция ВЧ сигналов	ПК-2.2	зачёт
6	Демодуляция детектирование ВЧ сигналов	ПК-2.2	зачёт
7	Помехоустойчивое кодирование. Блочные	ПК-2.2	зачёт
	коды		
8	Помехоустойчивое кодирование. Свёрточные	ПК-2.2	зачёт
	коды		
9	Системы перемежения и скремблирования	ПК-2.2	зачёт

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинноследственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения и сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

Оценка «зачтено» выставляется студенту, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения

оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и контрольной работы, систематическая активная работа на семинарских занятиях.

Оценка «не зачтено» выставляется студенту, который не справился с 50% вопросов и заданий билета, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях, компонентах, этапах развития культуры у студента нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

Вопросы к зачету по дисциплине «Основы цифровой модуляции и кодирования»

- 1. Показатели качества системы связи. Информационная, энергетическая и спектральная эффективность. ОСШ. Взаимосвязь между показателями.
- 2. Импульсная модуляция. Форматы представления цифровых сигналов и их СПМ. Временные диаграммы сигналов. Спектр сигнала в формате БВН.
- 3. Основы передачи сигнала по каналу с ограниченной полосой. Фильтр Найквиста. Фильтр типа "Приподнятого косинуса". Оценка ухудшения качества канала при помощи глазковой диаграммы.
- 4. Принципы цифровой полосовой модуляции: Структурная схема модулятора/демодулятора. Условие эквивалентности модемных сигналов. (Почему сигналы в НЧ и ВЧ областях эквиваленты)
- 5. Принципы цифровой полосовой модуляции: Когерентный и некогерентный приём. Векторное представление синусоиды.
 - 6. Фазовая манипуляция. Когерентный и некогерентный приём.
- 7. Многофазная манипуляция. Основные принципы. Зависимость вероятности ошибки от ОСШ и плоскость "Полоса-эффективность"
 - 8. Комплексная огибающая. Модуляция QPSK.
 - 9. Модуляция OQPSK.
 - 10. Модуляция π/4 DQPSK.
- 11. Частотная манипуляция. Обнаружение ЧМ-сигналов. Расстояние между тонами. Вероятность ошибки. Плоскость "Полоса-эффективность".
 - 12. Манипуляция с минимальным сдвигом. Модемы GMSK.
 - 13. Модемы QAM. Выбор схемы цифровой модуляции.
- 14. Канальное кодирование. Классификация. Типы защиты от ошибок.
 - 15. Канальное кодирование. Модели каналов. Компромиссы достига-

емые за счёт кодирования.

- 16. Линейные блочные коды. Основные понятия.
- 17. Систематические линейные блочные коды. Проверочная матрица. Синдром. Нормальная матрица.
- 18. Систематические линейные блочные коды. Процедура декодирования. Весовой коэффициент и расстояние Хэмминга. Возможность определения и исправления.
- 19. Циклические коды. Полиномиальная форма представления кода. Генераторный и проверочные полиномы. Процедура кодирования и определения синдрома.
- 20. Сверточное кодирование. Общие замечания. Формы представления сверточного кодера.
- 21. Сверточное кодирование. Реакция кодера на импульсное воздействие. Полиномиальное представление.
- 22. Сверточное кодирование. Представление свёрточного кодера. Диаграмма состояний.
- 23. Сверточное кодирование. Представление свёрточного кодера. Решетчатая диаграмма.
- 24. Декодирование свёрточных кодов. Общая постановка задачи. Мягкое и жёсткое принятие решений.
- 25. Алгоритм декодирования Витерби. Пример жестого декодирования. Мягкое декодирование.
- 26. Возникновение пакетных ошибок в канале. Блоковый и свёрточный перемежители.

Перечень лабораторных работ и вопросов для контроля

Лабораторная работа № 1 «Модуляция базовых сигналов»

Контрольные вопросы

- 1. Назовите о охарактеризуйте основные функции оптимального приёма.
- 2. Перечислите оптимальные критерии принятия решений.
- з. Какой критерий применялся в данной работе?
- 4. Зависит ли вероятность битовой ошибки от формы используемого сигнала?

- 5. В чём сходство и в чём отличие оптимальных приёмников на основе коррелятора и на основе согласованного фильтра?
- 6. Как изменится структура оптимального приёмника в случае передачи трёх и более символов?
- 7. Опишите параметры, которые отображаются на глазковой диаграмме.
- 8. Сформулируйте теорему Найквиста о минимальной полосе частот канала связи.
- 9. Назовите причины и механизм возникновения МСИ.
- 10. Каким образом наличие МСИ сказывается на спектре модулированного сигнала?
- 11. Каким образом наличие МСИ сказывается на форме глазковой диаграммы?

12.

Лабораторная работа №2 «Цифровая полосовая модуляция»

Контрольные вопросы

- 1. Каким образом осуществляется формирование комплексной огибающей модулированного сигнала?
- 2. Что такое спектральная эффективность модуляции?
- 3. Каковы структурные схемы и принцип работы модулятора QPSK?
- 4. Каковы структурные схемы и принцип работы демодулятора QPSK?
- 5. Каковы структурные схемы и принцип работы модулятора OQPSK?
- 6. Каковы структурные схемы и принцип работы демодулятора OQPSK?
- 7. Каковы структурные схемы и принцип работы модулятора π/4 DQPSK?
- 8. Каковы структурные схемы и принцип работы демодулятора π/4 DQPSK?
- 9. Каковы структурные схемы и принцип работы модулятора MSK?
- 10. Каковы структурные схемы и принцип работы демодулятора МSK?
- 11. Каковы структурные схемы и принцип работы модулятора GMSK?
- 12. Каковы структурные схемы и принцип работы демодулятора GMSK?
- 13. Каковы структурные схемы и принцип работы модулятора QAM?
- 14. Каковы структурные схемы и принцип работы демодулятора QAM?

Лабораторная работа №3 «Блоковое систематическое кодирование»

Контрольные вопросы

1. Опишите четыре типа компромиссов, возникающих при использовании кода коррекции ошибок.

- 2. В системах связи реального времени за получаемую с помощью избыточности эффективность кодирования приходится платить полосой пропускания. Чем приходится жертвовать за полученную эффективность кодирования в системах связи модельного времени?
- 3. В системах связи реального времени увеличение избыточности означает повышение скорости передачи сигналов, меньшую энергию на канальный символ и больше ошибок на выходе демодулятора. Объясните, как на фоне такого ухудшения характеристик достигается эффективность кодирования?
- 4. Почему эффективность традиционных кодов коррекции ошибок снижается при низких значениях E_b/N_0 ?

Лабораторная работа №4 «Помехоустойчивое кодирование с памятью»

Контрольные вопросы

- 1. Поясните связь диаграммы состояний с функциональной схемой свёрточного кодера.
- 2. Поясните принцип построения древовидной и решётчатых диаграмм.
- 3. Опишите возможные варианты кодирования свёрточных кодов.
- 4. Объяснить принцип работы декодера Витерби с жёсткой схемой принятия решений на примере.
- 5. Объяснить принцип работы декодера Витерби с мягкой схемой принятия решений на примере.
- 6. Привести перечень параметров для описания свёрточного кода.

График выполнения лабораторных работ размещен в лаборатории.

Составили

Доцент кафедры ТОР

А.А. Овинников

Заведующий кафедрой ТОР

В.В. Витязев