ПРИЛОЖЕНИЕ 1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра радиотехнических систем

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине (модулю)

«Схемотехника АЭУ»

Направление подготовки

11.05.01 «Радиоэлектронные системы и комплексы»

Направленность (профиль) подготовки

Радиоэлектронная борьба
Радионавигационные системы и комплексы
Радиосистемы и комплексы управления
Радиоэлектронные системы передачи информации

Уровень подготовки

специалитет

Программа подготовки

специалитет

Квалификация выпускника – инженер Форма обучения – очная Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Оценочные материалы – это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на практических занятиях и лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено — не зачтено». Количество лабораторных работ по каждому модулю определено графиком, утвержденным заведующим кафедрой. На практических занятиях используется система «зачтено — не зачтено».

Промежуточный контроль по дисциплине осуществляется проведением экзамена по первой части дисциплины и теоретическим зачетом по второй.

Паспорт оценочных материалов по дисциплине

No	Контролируемые разделы	Код контролируемой	Вид, метод, форма
п/п	(темы) дисциплины	компетенции (или её	оценочного
		части)	мероприятия
1	2	3	4
1	Введение	ОПК-2	Экзамен
2	Основные показатели	ОПК-2	Решение задач,
	усилительного устройства	OHK-2	экзамен

3	Графоаналитический		
	анализ работы	OHIV 2	Решение задач,
	усилительного каскада с	ОПК-2	экзамен
	использованием ВАХ		
4	активного элемента. Отрицательная обратная		
	связь в усилителях.	ОПК-2	Экзамен
5	Анализ работы в линейном		
	режиме усилительного		Решение задач, зачет
	каскада с резистивной	ОПК-2	по лабораторной
	нагрузкой при различных		работе, экзамен
	схемах включения		
6	транзистора Обеспечение и		
0	стабилизация режима		
	работы усилительного	ОПК-2	Экзамен
	каскада по постоянному		3 KSWIFEII
	току.		
7	Каскады предварительного	ОПК-2	Решение задач,
	усиления	OHK-2	экзамен
8	Широкополосные каскады	ОПК-2	Экзамен
	усиления.	3111 2	
9	Выходные каскады	OTIL 2	Решение задач, зачет
	усиления.	ОПК-2	по лабораторной
10	Verrenza		работе, экзамен
10	Усилители постоянного	ОПК-2	Экзамен
11	тока Операционные усилители и		Решение задач, зачет
11	функциональные	ОПК-2	по лабораторной
	устройства на их основе.		работе, экзамен
12	Устройства обработки		1
	сигналов на основе	OHV 2	Решение задач,
	аналоговых	ОПК-2	экзамен
	перемножителей.		

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.

- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме шкалы оценивания:

«Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение предусмотренные программой, выполнять задания, дополнительной литературой, основную знакомый с рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания учебно-программного материала в объеме, необходимом дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной рекомендованной программой. литературой, Как правило, «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Типовые контрольные задания или иные материалы Экзаменационные вопросы

- 1. Классификация усилителей. Усилитель, как четырехполюсник, передаточная функция и частотный коэффициент передачи однополюсного усилителя.
- 2.Амплитудно-частотная (AЧX) и фазочастотная (ФЧX) характеристики. Логарифмическая АЧХ. Линейные частотные искажения.

- 3.Переходная характеристика (ПХ). Линейные искажения ПХ в области малых и больших времен. Связь между линейными частотными искажениями и искажениями переходной характеристики.
- 4. Амплитудная характеристика. Динамический диапазон входного сигнала. Нелинейные искажения и их оценка (коэффициент гармоник).
- 5.Обратная связь и ее разновидности. Передаточная функция усилителя, охваченного обратной связью (ОС). Положительная и отрицательная ОС. Параметры и свойства ООС (глубина ОС, передаточная функция усилителя, охваченного глубокой ООС, улучшение частотных свойств усилителя с ООС)
- 6. О.С. Н-типа, эквивалентная схема усилителя, охваченного ООС Н-типа. Анализ влияния ООС Н-типа на параметры усилителя (KU, KE, KI, RBX, RBЫX).
- 7. О.С. Y-типа эквивалентная схема усилителя, охваченного ООС Y-типа. Анализ влияния ООС Y-типа на параметры усилителя (KU, KE, KI, RBX, RBЫX).
- 8. О.С. Z-типа, эквивалентная схема усилителя, охваченного ООС Z-типа. Анализ влияния ООС Z-типа на параметры усилителя (KU, KE, KI, RBX, RBЫX).
- 9. Физическая эквивалентная схема Джиоколетто. Ее модификация с учетом эффекта Миллера.
- 10. Каскад ОЭ с резистивной нагрузкой. Схема, свойства, параметры $((KE(j\omega),\ KU(j\omega),\ KI,,\ ZBX(j\omega).,\ RBЫХ.)$
- 11. Каскад ОБ с резистивной нагрузкой. Схема, свойства, параметры (KU, KI, KE, ZBX, RBЫX), усилительного каскада с ОБ.
- 12. Каскад ОК с резистивной нагрузкой. Схема, свойства, параметры (KU, KI, KE, ZBX, RBыX), усилительного каскада с ОК.
- 13. Дифференциальный усилительный каскад. Анализ его схемы при усилении синфазных и противофазных сигналов [K(+), RBX(+),K(-), RBX(-)].
- 14. Нагрузочная характеристика транзистора по постоянному и переменному токам. Выбор положения точки покоя в режимах A, B.
- 15. Три способа питания цепи базы транзистора (принцип функционирования схем с фиксацией тока базы, фиксацией потенциала базы, эмиттерной стабилизации).
- 16. Цепи смещения дифференциального усилительного каскада. Схема "токового зеркала".
- 17. Каскад предварительного усиления (КПУ), принципиальная электрическая схема, назначение элементов.
- 18. Анализ работы каскада предварительного усиления в области средних, верхних и нижних частот.
- 19. Анализ работы каскада с эмиттерной ВЧ коррекцией (в частотной и временной областях).
- 20. Графо-аналитический анализ работы резисторного ВК усилителя напряжения в режиме А. Энергетические показатели работы.
- 21. Графо-аналитический анализ работы двухтактного бестрансформаторного ВК в режиме В. Энергетические показатели работы.

- 22. Схемотехника УПТ [каскады сдвига уровня, ДУ с увеличенным динамическим диапазоном по входному сигналу, «активная» нагрузка].
- 23. Операционный усилитель (определение, основные параметры). Правила анализа схем решающих усилителей на ОУ.
 - 24. Быстродействие ОУ. АЧХ и ПХ малого и большого сигналов.
 - 25. Анализ работы ОУ в инвертирующем и неинвертирующем включениях.
 - 26. Анализ работы сумматора на ОУ и вычитателя на ОУ.
 - 27. Анализ работы аналогового интегратора.
 - 28. Анализ работы аналогового дифференциатора.
 - 29. Анализ работы аналогового логарифматора..
 - 30. Анализ схемы перемножителя на дифференциальном делителе тока..
- 31. Функциональные преобразователи на основе перемножителя (БМ модулятор, синхронный детектор; АМ модулятор, АМ демодулятор).
- 32. Функциональные преобразователи на основе перемножителя (фазовый и частотный демодуляторы)
 - 33. Компаратор, его характеристики. Компаратор с положительной ОС.

Перечень лабораторных работ и вопросов для контроля знаний при лопуске и слаче лабораторной работы

	допуске и сдаче лаобраторной работы					
№ работы	Название лабораторной работы и вопросы для контроля	Шифр				
1.	Исследование влияния отрицательной обратной связи на					
	показатели усилительных устройств					
	1. Как определить понятия возвратное отношение и возвратная					
	разность? Что является эквивалентом этих показателей в области					
	СЧ?					
	2. При введении последовательной по входу ОС увеличился					
	коэффициент усиления по напряжению и уменьшилось входное					
	сопротивление. Какого знака ОС была реализована в усилителе?					
	3. Почему в качестве источника сигнала в усилителе с	4306				
	последовательной по входу ООС целесообразно использовать					
	источник напряжения (э.д.с.)?					
	4. Почему в качестве источника сигнала в усилителе с					
	параллельной по входу ООС целесообразно использовать					
	источник тока?					
	5. Действие ООС каких типов приводит к стабилизации					
	величины переменного выходного напряжения и почему?					
	6. Действие ООС каких типов приводит к стабилизации					
	выходного тока и почему?					

	7. Для каких типов ООС характерно уменьшение сквозного коэффициента усиления по напряжению и почему? 8. Почему последовательная по входу ООС обеспечивает	
	увеличение входного сопротивления усилителя, а параллельная	
	по входу уменьшает?	
	9. Применением какой ООС – по напряжению или по току,	
	можно добиться уменьшения выходного сопротивления	
	усилителя и почему?	
	10. Почему уменьшаются нелинейные искажения усиливаемого	
2.	сигнала при охвате усилителя петлей ООС? Исследование усилительного каскада с резистивной	
2.	нагрузкой при различных схемах включения биполярного	
	транзистора	
	1. Пояснить назначение элементов в схемах усилителей, приведенных на рис.1, 2, 3.	
	2. Каковы возможные способы подключения транзистора в	
	усилительном каскаде?	
	3. Чем объясняется эффект инверсии полярности входного	
	сигнала в схеме каскада с ОЭ и почему таким эффектом не	
	обладают каскады с ОБ и ОК?	
	4. В чем заключаются критерии выбора положения «точки покоя» в линейном режиме (режиме А) работы транзистора?	4557
	5. Будет ли изменяться коэффициент усиления по напряжению в	
	схеме усилителя рис.1 при изменении величины RЭ и, если	
	будет, то почему?	
	6. Что такое «эффект Миллера» и как он сказывается на частотных свойствах каскада ОЭ?	
	7. Почему «эффект Миллера» практически не проявляется в работе усилительных каскадов ОБ и ОК?	
	8. Какие показатели каскадов ОБ и ОК существенно лучше, а	
	какие хуже по сравнению с параметрами каскада ОЭ и почему?	
3.	Исследование двухтактного каскада усилителя мощности	
	1. Каково назначение выходного каскада и в чем заключаются	
	особенности его работы?	
	2. Что такое коэффициенты использования?	
	3. По каким критериям классифицируются ВК и какие	4484
	разновидности его различают?	
	4. В чем сущность графоаналитического метода анализа работы ВК?	
	5. В чем принципиальное отличие режимов работы A и В?	
	6. Как выбирается положение точки покоя транзистора ВК в	
L	o. Tear bisotipactor nonomenine to iki nonon tpuninetopa DK b	

режиме А? Провести графоаналитический анализ работы ВК в режиме А.

- 7. Какие энергетические показатели характеризуют работу ВК в режиме А? Вывести аналитические выражения этих показателей и отобразить их графически.
- 8. При каком условии сквозная BAX транзистора для анализа работы BK в режиме B может быть аппроксимирована ломаной прямой?
- 9. Зачем в каскаде, работающем в режиме В, вводится смещение базы транзистора? Какого вида искажения формы выходного колебания при этом устраняются?
- 10. Как выбирается положение точки покоя транзистора ВК в режиме В? Провести графоаналитический анализ работы ВК в режиме В.
- 11. Почему ВК, работающие в режиме В строятся по двухтактной схеме?
- 12. Чем объяснить, что при использовании двухтактной схемы через сопротивление нагрузки не протекает постоянный ток?
- 13. Какие энергетические показатели характеризуют работу ВК в режиме В? Вывести аналитические выражения этих показателей и отобразить их графически.
- 14. Как объяснить понятие режима АВ?
- 15. Как объяснить наличие максимума в кривой зависимости полезной мощности в нагрузке от величины этой нагрузки?
- 16. Зачем в схеме двухтактного ВК с одним источником питания устанавливается разделительный конденсатор между выходом ВК и нагрузкой? Из каких соображений выбирается величина ёмкости этого конденсатора?

4. Исследование операционного усилителя

- 1. На какую величину отличаются коэффициенты усиления масштабирующего усилителя в неинвертирующем и инвертирующем включениях?
- 2. Каким элементом схемы определяется величина входного сопротивления масштабирующего усилителя в инвертирующем включении?

3. Что такое «виртуальный нуль» и чем обусловлен этот эффект?

- 4. Как определить входной ток масштабирующего усилителя в инвертирующем включении?
- 5. На какие параметры и каким образом влияет охват ОУ (УПТ) цепью ООС?
- 6. Чем объясняется ухудшение частотных свойств сумматора при

4695

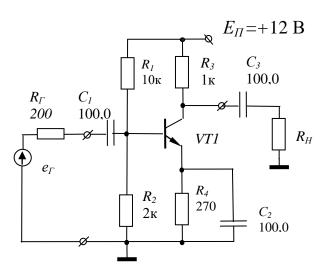
увеличении числа суммируемых ЭДС?

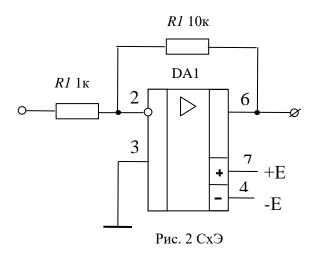
- 7. Почему при наличии постоянной составляющей во входном сигнале реальный аналоговый интегратор входит в режим насыщения?
- 8. Как определить частотный диапазон работы аналогового интегратора?
- 9. Как определить частотный диапазон работы аналогового дифференциатора?
- 10. В чем заключается недостаток простейшей схемы аналогового логарифматора?

План практических занятий

- 1. Показатели усилительного каскада с ОЭ.
- 2. Усилительный каскад с резистивной нагрузкой при различных схемах включения активного элемента
 - 3. Изучение усилителя с отрицательной обратной связью (ООС)
- 4. Функциональные устройства на основе операционного усилителя (ОУ) и аналогового перемножителя (АПС)

Типовые задачи для практических занятий Тема: "Показатели усилительного каскада с ОЭ"




Рис. 1 СхЭ каскада ОЭ

Задание:

- анализ реального схемы усилительного целью каскада определения ряда его показателей: коэффициента усиления области средних частот (КО), логарифмической амплитудно-частотной [ЛАЧХ G(ω) и фазочастотной [ФЧХ $\sigma(\omega)$ характеристик, переходных характеристик (ПХ) в области малых больших (BB) (MB) времен, амплитудной характеристики (АХ);
- графическое построение вышеприведенных характеристик;
 - проведение имитационного

моделиро-вания работы реального усилительного каскада в среде МісгоСар

Тема: "Усилительный каскад с резистивной нагрузкой при различных схемах включения активного элемента"

Задание:

- используя графоаналитический метод анализа и параметры транзистора VT1, рассчитать по прилагаемой выходной ВАХ режимы работы по постоянному и переменному току схемы рис.1:
- определить параметры точки покоя в режиме A;
- нанести нагрузочную прямую по переменному току и оценить величину максимального размаха выходного сигнала (U2max).

Tema: "Изучение усилителя с отрицательной обратной связью (ООС)" Задание:

- изобразить структурную схему (СхС) двухкаскадного усилителя, в котором использованы местные и общая ОС.

Тема: " Функциональные устройства на основе операционного усилителя (ОУ) и аналогового перемножителя (АПС)"

Задание:

- на рис. 2 приведена СхЭ принципиальная масштабирующего усилителя, реализованного на операционном усилителе (ОУ) К140УД26 с параметрами $K0=2\ 105,\ f1=2\ 107\ \Gamma$ ц, RBЫX = 50 Ом. Требуется рассчитать параметры усилителя: коэффициент усиления КИ, входное сопротивление RBX, полосу пропускания по уровню MB=0.707.

Темы курсовых работ. типовое задание

No	Наименование темы		
1	Широкополосный усилитель		
2	Усилитель сигнала звуковых частот		
3	Усилитель предмодулятора		

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИСТЕТ

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

по дисциплине «Сх АЭУ»

	группа				
	1 1 7 1 1 1 1 1 1				
XX xxxxxx	х 20ХХ года				
Обозначение Количество Едини					
Ивых (размах)		Вольт			
KU		-			
fHfB		Гц			
RΓ		Ом			
RH		Ом			
•	•				
MH		дБ			
MB		дБ			
kΓ		%			
q		дБ			
Отношение сигнал/шум, не менее q дБ Регулировка усиления:					
через ХХ дБ		дБ			
0		дБ			
		В			
\pm 5; \pm 6; \pm 12; \pm 15					
нормальные					
мелкосерийный					
i I					
иальной схемы (Сх	Э) усилителя				
	. •				
Библиографический список					
(ПЭ)					
1 лист формата A2 (A3) – СхЭ принципиальная					
ие – Перечень элементов графического материала.	фический список ие – Перечень элементов (ПЭ) графического материала.	фический список ие – Перечень элементов (ПЭ) графического материала.			
	Uвых (размах) КU fHfB RГ RH MH MB kГ q через XX дБ 0 = 5; ± 6; ± 12; ± 15 нормальные мелкосерийный	Uвых (размах) KU fHfB RГ RH MH MB kГ q через XX дБ 0 = 5; ± 6; ± 12; ± 15 нормальные мелкосерийный			


подпись, дата

Задание принял к исполнению

фамилия, инициалы

Контрольные вопросы для оценки сформулированности компетенций.

(при ответе на вопрос поставить знак «х» в выделенную жирной линией клеточку, номер которой соответствует номеру выбранного ответа)

Вопрос 4 На входе усилителя действует гармонический сигнал с амплитудой 100 мВ, частотой f и нулевой начальной фазой. Усилитель работает в линейном режиме. Каковы будут параметры сигнала на выходе усилителя, если значения АЧХ и ФЧХ на частоте f соответственно равны 10 и (-45O) Варианты ответов на вопрос Параметры UMBЫX = 10 B, UMBЫX = 1 B, UMBЫX = 1 B, $\phi 0 = -450$ $\phi 0 = 450$ 00 = -900сигнала не изменятся Вопрос 5 Двухкаскадный усилитель (транзисторы усилителя включены по схеме с ОЭ) охватили петлей последовательной по напряжению ООС (Н – типа) с глубиной ОС F=10. Как изменятся параметры усилителя (коэффициент усиления напряжению KUF, коэффициент усиления по току KIF, величины входного и выходного сопротивлений RBXF и RBЫXF, полоса пропускания ΔfF)? Варианты ответов на вопрос 3 4 Параметры **KUF** и RBЫХF **KUF** и RBXF **KIF RBЫXF** уменьшатся в уменьшатся в F уменьшатся в F раз; усилителя не раз; RBXF и ΔfF раз; RBЫХF и **RBXF** ΔfF изменятся И ΔfF увеличатся увеличатся в F раз; увеличатся В в F раз; KIF не KUF не изменится KIF раз; не изменится изменится. Вопрос 6 3 На входе усилителя действует гармонический сигнал частотой $f = 1000 \, \Gamma$ ц. Подключенный к выходу усилителя спектроанализатор показывает, что выходной сигнал содержит гармоническое колебание частоты 1000 Гц с амплитудой 1 В, гармоническое колебание частоты 2000 Гц с амплитудой 0,04 В и гармоническое колебание частоты 3000 Гц с амплитудой 0,03 В. Таким образом нелинейные искажения сигнала в усилителе оцениваются величиной: Варианты ответов на вопрос 1 3 3 % 6 % 1 % 5 % Вопрос 7 В усилительном каскаде режим работы по постоянному току задается схемой «эмиттерной стабилизации». Известно, что этой ДЛЯ схемы характерна термостабилизация положения точки покоя. Происходит это за счет: Варианты ответов на вопрос

1	2	3	4
фиксации	действия	действия	за счет фиксации
потенциала базы	последовательной	последовательной	тока базы
	по току ООС	по напряжению	
	·	OOC	

Вопрос 8				1	2	3	4
Для каких схем включения транзистора в усилительном каскаде характерно наличие «эффекта Миллера»?							
Варианты ответов на	вопрос						
1	2	3		4			
с ОК	с ОБ	с ОЭ			скодн Э - ОІ		ехема
Вопрос 9				1	2	3	4
При одинаковой вели по напряжению обест	чине нагрузки наибол печивает каскад:	вший сквозной ко	эфф	риц	иент	усил	ения
Варианты ответов на	вопрос						
1	2	3	4				
с ОК	с ОБ	с ОЭ	ДИ	фф	ерені	циал	ьный
Вопрос 10				1	2	3	4
При одинаковой пропускания АЧХ об Варианты ответов на		ой нагрузки на	ибо	ЭЛЬ	шую	ПО	лосу
1	2	3	4				
с ОК	с ОБ			he	ренци	іапы	ый
Вопрос 11	V 0 <i>D</i>		1	4	2	3	4
Для обеспечения реж необходимо:	кима усиления в диф	ференциальном ус	или	теј	ПЬНОМ	і кас	каде
Варианты ответов на	вопрос						
1	2	3		4			
подать на два его	обеспечить	подать на два с			дать		игнал
входа одинаковые	1						
сигналы	RK/RЭ>>1 при	ные сигналы од			одов,		
	одинаковых	наковой величинн	Ι	3a'	земли	IB BT	орой
	входных сигналах						
Вопрос 12			1		2	3	4
Чтобы обеспечить эффективную работу каскада с ОК (ЭП) необходимо							
предъявить следующие требования к величинам сопротивления источника							
сигнала RГ и сопротивлению нагрузки RH:							

Варианты ответов	на вопрос							
1	2		3		4			
RΓ>> h11Э, RH-	\rightarrow R Γ = h11 \rightarrow RH	$\rightarrow 0$	$R\Gamma \rightarrow 0$,	RH→	R	Γ>> h	119,	RH>>
0			∞			11Э		
Вопрос 13					1	2	3	4
Чтобы обеспечить	эффективную раб	боту	каскада с С	ОБ не	обх	одимо	пред	ъявить
следующие требо		•					-	
сопротивлению на								
Варианты ответов	Варианты ответов на вопрос							
1	2	3			4			
$R\Gamma \rightarrow 0, RH \rightarrow$	$R\Gamma \to \infty, RH \to 0$	RΓ>	> h113, I	RH>>	R)	√>> h1	1Э, R	$H \rightarrow 0$
∞		h113	9	_				
Вопрос 14				-	1	2	3	4
Чтобы получить м	аксимально плоску	ую А	ЧХ усилител	пьного	кас	скада с	ЭМИТ	терной
ВЧ коррекцией	(с частотнозавис	симой	і последов	ательн	юй	по ′	току	OOC)
необходимо обеспо	ечить величину пос	стоян	ной времени	и цепи	кор	рекции	и равн	ую
Варианты ответов	на вопрос							
1	2	3	3			4		
постоянной вре-	РЕМОРСКОР	I	RKOPCKOP=	=		РЕМОРСКОР		
мени цепи	10RHCH	(RHCH)/2			2RHC	Н	
нагрузки								
(ККОРСКОР=								
RHCH)								
Вопрос 15				-	1	2	3	4
Зависимость вели	ичины колебатель	ной	мощности	в на	агру	зке д	вухта	ктного
усилителя мощнос	ти от величины это	ой наг	рузки соотв	ветству	ет і	трафик	у рис	унка:
Варианты ответов	на вопрос							
1	2	3	3		4			
$P_H(R_H)$	$P_{H}(R_{H})$		$P_{H}(R_{H})$			$P_H(R_H)$		
 	 	\uparrow			\uparrow		,	
R_{H}	\(\simega \)	$R_{\rm H}$	\longrightarrow	R _H			\longrightarrow	R_{H}
Вопрос 16				-	1	2	3	4
-	у функциональног	о пре	еобразовани			1		
Для эффективного функционального преобразования сигналов операционный усилитель (УПТ) должен отвечать следующим требованиям:								
Варианты ответов на вопрос								
1	2		3			4		
			1 =					

$KU0 \rightarrow \infty; RBX \rightarrow$	$KU0 \rightarrow \infty; RBX \rightarrow$	$KU0 \rightarrow \infty; RBX \rightarrow$	KU0 = 1; RBX
∞ ; RBbIX $\rightarrow \infty$.	∞ ; RBЫX \rightarrow 0.	$0 RBЫХ \rightarrow 0.$	$\rightarrow \infty$; RBЫX \rightarrow
			∞ .

Составил доцент кафедры РТС к.т.н., доцент

Ю.Н. Мамаев

Заведующий кафедрой РТС д.т.н., профессор

В.И. Кошелев