МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Вычислительная и прикладная математика»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ «Программирование специализированных вычислителей»

Направление подготовки 09.03.04 «Программная инженерия»

Направленность (профиль) подготовки «Программное обеспечение систем искусственного интеллекта»

Уровень подготовки – бакалавриат

Квалификация выпускника – бакалавр

Форма обучения – очная

Срок обучения – 4 года

Рязань 2023 г.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов и процедур, предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций и индикаторов их достижения, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости и промежуточная аттестация проводятся с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся на практических занятиях по результатам выполнения и защиты обучающимися индивидуальных заданий, по результатам выполнения контрольных работ и тестов, по результатам проверки качества конспектов лекций и иных материалов.

В качестве оценочных средств на протяжении семестра используется устные и письменные ответы студентов на индивидуальные вопросы, письменное тестирование по теоретическим разделам курса, реферат. Дополнительным средством оценки знаний и умений студентов является отчет о выполнении практических заданий и его защита.

По итогам курса обучающиеся сдают экзамен. Форма проведения — устный ответ с письменным подкреплением по утвержденным билетам, сформулированным с учетом содержания дисциплины. В билет для экзамена включается два теоретических вопроса и задача. В процессе подготовки к устному ответу студент должен составить в письменном виде план ответа.

2. Перечень компетенций с указанием этапов их формирования

При освоении дисциплины формируются следующие компетенции: ПК-6 (индикаторы ПК-6.1, ПК-6.2, ПК-6.3).

Указанные компетенции формируются в соответствии со следующими этапами:

- формирование и развитие теоретических знаний, предусмотренных указанными компетенциями (лекционные занятия, самостоятельная работа студентов);
- приобретение и развитие практических умений, предусмотренных компетенциями (практические занятия, самостоятельная работа студентов);
- закрепление теоретических знаний, умений и практических навыков, предусмотренных компетенциями, в ходе решения конкретных задач на занятиях, выполнения индивидуальных заданий на практических занятиях и их защиты, а также в процессе сдачи экзамена.

3 Показатели и критерии оценивания компетенций (результатов) на различных этапах их формирования, описание шкал оценивания

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;

- продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

При достаточном качестве освоения более 80% приведенных знаний, умений и навыков преподаватель оценивает освоение данной компетенции в рамках настоящей дисциплины на эталонном уровне, при освоении более 60% приведенных знаний, умений и навыков — на продвинутом, при освоении более 40% приведенных знаний умений и навыков — на пороговом уровне. При освоении менее 40% приведенных знаний, умений и навыков компетенция в рамках настоящей дисциплины считается неосвоенной.

Уровень сформированности каждой компетенции на различных этапах ее формирования в процессе освоения данной дисциплины оценивается в ходе текущего контроля успеваемости и представлено различными видами оценочных средств.

Оценке сформированности в рамках данной дисциплины подлежат компетенции/индикаторы:

Показатели достижения планируемых результатов обучения и критерии их оценивания на разных уровнях формирования компетенций приведены в таблице 1.

Таблица 1. Показатели достижения индикаторов компетенции

1	2	3	4
Компетенция: код	Индикаторы	Этап	Наименование оце-
			ночного средства
по ФГОС 3++, формулировка ПК-6 (09.03.04/02 Программное обеспечение систем искусственного интеллекта) Способен использовать инструментальные средства для решения задач машинного обучения	ПК-6.1 Осуществляет оценку и выбор инструментальных средств для решения поставленной задачи ЗНАТЬ: возможности современных инструментальных средств и систем программирования для решения задачанализа данных и машинного обучения. УМЕТЬ: проводить сравнительный анализ и		ночного средства
	осуществлять выбор инструментальных средств для решения задач машинного обучения. ВЛАДЕТЬ: инструментальными средствами для решения профессиональных задач. ПК-6.2 Разрабатывает модели машинного обучения для решения задач ЗНАТЬ: функциональные возможности современных инструментальных	1	Зачет.

1	2	3	4
	средств и систем программирования		
	в области создания моделей и мето-		
	дов машинного обучения; принципы		
	проведения машинного эксперимен-		
	та, проблемы переобучения и недо-		
	обучения модели, требования к обу-		
	чающей, тестовой и валидационной		
	выборкам для решения задач анализа		
	данных и машинного обучения.		
	УМЕТЬ:		
	применять современные инструмен-		
	тальные средства и системы про-		
	граммирования для разработки моде-		
	лей машинного обучения; планиро-		
	вать и выполнять машинные экспе-		
	рименты, оценивать точность и каче-		
	ство построенных моделей.		
	владеть:		
	основами разработки моделей ма-		
	шинного обучения для решения по-		
	ставленных задач.		
	ПК-6.3 Создаёт, поддерживает и		
	использует системы ИИ, включа-		
	ющие разработанные модели и ме-		
	тоды, с применением выбранных		
	инструментов машинного обучения		
	ЗНАТЬ		
	- методологию проведения массово		
	параллельных вычислений для уско-		
	рения машинного обучения (с ис-		
	пользованием GPU)		
	- принципы работы распределённых		
	кластерных систем		
	УМЕТЬ		
	- работать с распределённой кластер-		
	ной системой при создании, под-		
	держке и использовании систем ИИ		
	ВЛАДЕТЬ:		
	основами создания, поддержки и ис-		
	пользования систем искусственного		
	интеллекта с применением выбран-		

1	2	3	4
	ных инструментов машинного обуче-		
	ния.		

Преподавателем оценивается содержательная сторона и качество материалов, приведенных в отчетах студента по практическим занятиям. Кроме того, преподавателем учитываются ответы студента на вопросы по соответствующим видам занятий при текущем контроле:

- контрольные опросы;
- задания для практических занятий.

Принимается во внимание знания обучающимися:

- -Принципы параллельных вычислений.
- -Необходимость и актуальность параллельных вычислений.
- -Различия между многозадачностью и многопоточностью.
- -Определение эффективности параллельного алгоритма.

наличие умений:

-Применять полученные знания на практике для ускорения решения задач машинного обучения

обладание навыками:

-Исследования быстродействия параллельных вычислительны систем и разработка параллельных алгоритмов

Критерии оценивания уровня сформированности компетенции в процессе выполнения практических работ:

41%-60% правильных ответов соответствует пороговому уровню сформированности компетенции на данном этапе ее формирования;

61%-80% правильных ответов соответствует продвинутому уровню сформированности компетенции на данном этапе ее формирования;

81%-100% правильных ответов соответствует эталонному уровню сформированности компетенции на данном этапе ее формирования.

Сформированность уровня компетенций не ниже порогового является основанием для допуска обучающегося к промежуточной аттестации по данной дисциплине.

Формой промежуточной аттестации по данной дисциплине является зачет, оцениваемый по принятой в $\Phi\Gamma$ БОУ ВО «РГРТУ» системе: «зачтено» и «не зачтено».

Критерии оценивания промежуточной аттестации представлены в таблице.

Шкала оценивания	Критерии оценивания
«зачтено»	оценки «зачтено» заслуживает обучающийся, продемон-
	стрировавший полное знание материала изученной дисци-
	плины, усвоивший основную литературу, рекомендован-
	ную рабочей программой дисциплины; выполнивший все
	практические задания; показавший систематический ха-
	рактер знаний по дисциплине, ответивший на все вопросы
	билета или допустивший погрешность в ответе вопросы,
	но обладающий необходимыми знаниями для их устране-
	ния под руководством преподавателя;
«не зачтено»	оценки «не зачтено» заслуживает обучающийся, не вы-
	полнивший практические задания, продемонстрировавший
	серьезные пробелы в знаниях основного материала изу-
	ченной дисциплины, не ответивший на все вопросы билета

и дополнительные вопросы. Оценка «не зачтено» ставится
обучающимся, которые не могут продолжить обучение по
образовательной программе без дополнительных занятий
по соответствующей дисциплине (формирования и разви-
тия компетенций, закрепленных за данной дисциплиной).

4. Типовые контрольные задания или иные материалы

ФОС по дисциплине содержит следующие оценочные средства, позволяющие оценить знания, умения и уровень приобретенных компетенций при текущем контроле и промежуточной аттестации, разбитые по модулям дисциплины:

• макеты билетов к экзамену.

Средства для оценки различных уровней формирования компетенций по категориям «знать», «уметь», «владеть» обеспечивают реализацию основных принципов контроля, таких, как объективность и независимость, практико-ориентированность, междисциплинарность.

С учетом этого, контрольные вопросы (задания, задачи,) входящие в ФОС, для различных категорий и уровней освоения компетенций имеют следующий вид:

Уровень ЗНАТЬ

Дескрипторы	Пример задания из оценочного средства
методологию проведения мас-	1. Набор инструментальных средств, приме-
сово параллельных вычисле-	няемый при построении приложения на основе CUDA.
ний для ускорения машинного	2. Опишите основные отличия OpenCL от
обучения (с использованием	CUDA, дайте оценку возможностей каждой из моделей.
GPU)	
принципы работы распреде-	2. Классификация уровней параллелизма про-
лённых кластерных систем	граммы, технологии параллельного программирования,
	соответствующая каждому уровню.

Уровень УМЕТЬ

· [· · · · · · · · · · · · · · · · · ·	
Дескрипторы	Пример задания из оценочного средства
работать с распределённой	1. Каким образом распределяются вычисления
кластерной системой при со-	между параллельными потоками несколькими ядрами
здании, поддержке и исполь-	микропроцессора E2k?
зовании систем ИИ	2. Опишите порядок передачи параметров, пе-
	редаваемых вычислительным ядрам, передачи результа-
	тов вычислений в основной вычислительный процесс?

Перечень лабораторных работ

Лабораторная работа 1.1-1.3

«Исследование быстродействия параллельных вычислительны систем и разработка параллельных алгоритмов»

Цель работы: получение практических навыков проектирования, кодирования и отладки программы, использующей параллельные алгоритмы; изучение быстродействия параллельных вычислительных систем; оценка возможности импортозамещения, поиск аналогов.

Задачи работы: изучение базовых принципов параллельного выполнения алгорит-

мов; реализация алгоритмов на базовом процессоре с использованием потоков центрального процессора; поиск актуальной информации о системах с открытым исходным кодом.

Лабораторная работа 2.1-2.2

«Использование графического ускорителя на основе CUDA и OpenCL»

Цель работы: получение практических навыков проектирования, кодирования и отладки программы, использующей графический ускоритель на основе технологии CUDA. Освоение базовых конструкций расширения языка, функций библиотеки времени выполнения CUDA.

Задачи работы: изучение базовых возможностей технологии CUDA, реализация на этой технологии умножение матрицы на матрицу; изучение базовых возможностей технологии OpenCL, реализация на этой технологии умножение матрицы на матрицу; сравнение времени выполнения вычислений на графическом ускорителе без учёта времени пересылки данных умножения матрицы на вектор, с учётом времени пересылки данных и времени выполнения вычислений на центральном процессоре.

Лабораторная работа 3.1-3.2

«Использование процессора E2k для оценки возможностей распараллеливающего копилятора lcc. Ливеморские циклы»

Цель работы: получение практических навыков работы с распараллеливающим компилятором VLIW для микропроцессора E2k, изучение набора обрабатывающих блоков микропроцессора E2k и рассмотрение структуры внутренних шин микропроцессора.

Задачи работы: изучение основных опций использования lcc, преобразование выбранного ассемблерного кода для оценки эффективности параллельного счёта; разработать приложение для раздельного тестирования производительности основных узлов процессора E2k и обеспечить стресс-тестирование отдельных блоков и шин; разработка приложения для оценки возможностей компилятора lcc, реализовав ливерморские циклы, оценка эффективности счёта.

Лабораторная работа 4.1-4.3

«Разработка векторно-матричного сопроцессора. Использования»

Цель работы: получение практических навыков проектирования, кодирования и отладки программы, использующей векторно-матричный сопроцессор. Эмуляция сопроцессора для векторно-матричных вычислений.

Задачи работы: изучение базовых возможностей технологии разработки сопроцессоров, реализация умножение матрицы на матрицу, вектор на вектор заданной размерности; сравнение времени выполнения вычислений на сопроцессоре без учёта времени пересылки данных умножения матрицы на вектор, с учётом времени пересылки данных и времени выполнения вычислений на центральном процессоре.