МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Микро- и наноэлектроника»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.02 «Технология изделий микро- и наноэлектроники»

Направление подготовки 03.03.01 «Прикладные математика и физика»

Направленность (профиль) подготовки Электроника, квантовые системы и нанотехнологии

> Уровень подготовки Академический бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – очная

1. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

- ПК-3.1: Проводит контроль электрических параметров активной части схемы и трассировки коммутационных плат изделий "система в корпусе".
- ПК-3.2: Проводит проверку электрических параметров интегральных электронных схем, изделий "система в корпусе" на соответствие требованиям технического задания.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (зачтено, незачтено).

Паспорт фонда оценочных средств по дисциплине

№ п / п	№ раз де ла	Контролируем ые разделы (темы) дисциплины (результаты по разделам)	Код контроли- руемой компетен- ции (или её части)	Этап формирования контролируемой компетенции (или её части)	Вид, метод, форма оценочного средства
1	1	Общие сведения о дисциплине. Полупроводников ые материалы.		Лекционные, практические, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет, экзамен
2	2	Обработка полупроводников ых материалов	ПК-3.1, ПК-3.2	Лекционные, практические, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет, отчеты по лабораторным работам, экзамен
3	3	Методы эпитаксиального осаждения.	ПК-3.1, ПК-3.2	Лекционные, практические, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет, отчеты по лабораторным работам, экзамен
4	4	Диэлектрические пленки	ПК-3.1, ПК-3.2	Лекционные, практические,	Аналитический отчет, экзамен

				самостоятельные	
				занятия обучающихся	
				в течение учебного	
				семестра	
5	5	Фотолитография	ПК-3.1,	Лекционные,	Аналитический
			ПК-3.2	практические,	отчет, экзамен
				самостоятельные	
				занятия обучающихся	
				в течение учебного	
				семестра	
6	6	Легирование	ПК-3.1,	Лекционные,	Аналитический
		полупроводнико	ПК-3.2	практические,	отчет, экзамен
		В		самостоятельные	
				занятия обучающихся	
				в течение учебного	
				семестра	
7	7	Получение	ПК-3.1,	Лекционные,	Аналитический
		структур	ПК-3.2	практические,	отчет, экзамен
		методом		самостоятельные	
		напыления		занятия обучающихся	
				в течение учебного	
				семестра	
8	8	Промежуточная	ПК-3.1,	Лекционные,	Аналитический
		аттестация	ПК-3.2	практические,	отчет, экзамен
				самостоятельные	
				занятия обучающихся	
				в течение учебного	
				семестра	

2 Формы текущего контроля

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях, по результатам выполнения обучающимися индивидуальных заданий, проверки качества конспектов лекций и иных материалов.

Текущий контроль по дисциплине «Технология изделий микро- и наноэлектроники» проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно и на лабораторных занятиях, а также экспресс-опросов и заданий по лекционным материалам и лабораторным работам. Учебные пособия, рекомендуемые для самостоятельной работы и подготовки к лабораторным занятиям обучающихся по дисциплине «Технология изделий микро- и наноэлектроники», содержат необходимый теоретический материал. Результаты самостоятельной работы контролируются преподавателем.

3 Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является экзамен. Форма проведения экзамена — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Целью проведения промежуточной аттестации является проверка компетенций, приобретенных студентом при освоении дисциплины.

4 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, шкал оценивания

Оценка степени формирования указанных выше (п. 1) контролируемых компетенций у обучающихся на различных этапах их формирования проводится преподавателем во время лекций, консультаций, практических и лабораторных занятий по шкале оценок «зачтено» – «не зачтено». Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, и на лабораторных и практических занятиях, а также экспресс- опросов и заданий по лекционным материалам и лабораторным работам. Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий и самостоятельной работы оценивается по критериям шкалы оценок - «зачтено» — «не зачтено». Освоение материала дисциплины и достаточно высокая степень формирования контролируемых компетенций обучающегося (своевременные выполнение и защита отчетов по лабораторным работам служат) основанием для допуска обучающегося к этапу промежуточной аттестации - экзамену.

Уровень теоретической подготовки студента определяется составом и степенью формирования приобретенных компетенций, усвоенных теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач целенаправленного применения различных групп материалов в электронной технике.

Применяется четырехбальная шкала оценок: "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", что соответствует шкале "компетенции студента полностью соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента в основном соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента в основном соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента не соответствуют требованиям $\Phi \Gamma OC$ BO".

Целью проведения промежуточной аттестации (экзамена) является проверка общекультурных, общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Физические основы фотоники».

Экзамен организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, является утвержденный экзаменационный билет, содержание которого определяется ОПОП и настоящей рабочей программой. Экзаменационный билет включает в себя, как правило, два вопроса, которые относятся к указанным выше теоретическим разделам дисциплины.

Оценке на заключительной стадии экзамена подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора.

Применяются следующие критерии оценивания компетенций (результатов):

- -уровень усвоения материала, предусмотренного программой;
- -умение анализировать материал, устанавливать причинно-следственные связи;
- полнота, аргументированность, убежденность ответов на вопросы;
- качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

Применяется четырехбальная шкала оценок: "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", что соответствует шкале "компетенции студента полностью соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента

соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента в основном соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента не соответствуют требованиям $\Phi \Gamma OC$ BO".

5. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, шкал оценивания

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

«Отлично»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

«Хорошо»:

достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов.

«Удовлетворительно»:

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов):

понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Неудовлетворительно»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

При трех вопросах в билете общая оценка выставляется следующим образом: «отлично», если все оценки «отлично» или одна из них «хорошо»; «хорошо», если не более одной оценки «удовлетворительно»; «удовлетворительно», если две и более оценок «удовлетворительно»; «неудовлетворительно», если одна оценка «неудовлетворительно», а остальные не выше чем «удовлетворительно» или две оценки «неудовлетворительно».

6. Критерии оценивания промежуточной аттестации

Таблица 1 - Критерии оценивания промежуточной аттестации

Шкала оценивания	Критерии оценивания
«отлично»	студент должен: продемонстрировать глубокое и прочное
	усвоение знаний материала; исчерпывающе, последовательно,
	грамотно и логически стройно изложить теоретический
	материал; правильно формулировать определения; уметь сделать
	выводы по излагаемому материалу; безупречно ответить не
	только на вопросы билета, но и на дополнительные вопросы в
	рамках рабочей программы дисциплины; продемонстрировать
	умение правильно выполнять практические задания,
	предусмотренные программой;

//Vonomow	CTVIANT HARWAII! HACHEMONICTAMACROTI HACTOTOMIA HARMAC PROMIC
«хорошо»	студент должен: продемонстрировать достаточно полное знание
	материала; продемонстрировать знание основных теоретических
	понятий; достаточно последовательно, грамотно и логически
	стройно излагать материал; уметь сделать достаточно
	обоснованные выводы по излагаемому материалу; ответить на
	все вопросы билета; продемонстрировать умение правильно
	выполнять практические задания, предусмотренные программой,
	при этом возможно допустить непринципиальные ошибки.
«удовлетворительно»	студент должен: продемонстрировать общее знание изучаемого
«удовистворитенвио»	материала; знать основную рекомендуемую программой
	дисциплины учебную литературу; уметь строить ответ в
	соответствии со структурой излагаемого вопроса; показать общее
	владение понятийным аппаратом дисциплины; уметь устранить
	допущенные погрешности в ответе на теоретические вопросы
	и/или при выполнении практических заданий под руководством
	преподавателя, либо (при неправильном выполнении
	практического задания) по указанию преподавателя выполнить
	другие практические задания того же раздела дисциплины.
«неудовлетворительно»	ставится в случае: незнания значительной части программного
	материала; не владения понятийным аппаратом дисциплины;
	существенных ошибок при изложении учебного материала;
	неумения строить ответ в соответствии со структурой
	излагаемого вопроса; неумения делать выводы по излагаемому
	материалу. Как правило, оценка «неудовлетворительно» ставится
	студентам, которые не могут продолжить обучение по
	образовательной программе без дополнительных занятий по
	соответствующей дисциплине (формирования и развития
	компетенций, закрепленных за данной дисциплиной). Оценка
	«неудовлетворительно» выставляется также, если студент после
	начала экзамена отказался его сдавать или нарушил правила
	сдачи экзамена (списывал, подсказывал, обманом пытался
	получить более высокую оценку и т.д.).

7 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы (для всех видов проводимых занятий или самостоятельных работ необходимо предусмотреть материалы для проверки знаний, умений и владений навыками)

Типовые задания в рамках самостоятельной работы студентов для укрепления теоретических знаний, развития умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 1. Планарная полупроводниковая технология
- 2. Методы очистки полупроводниковых материалов.
- 3. Синтез полупроводниковых соединений.
- 4. Дефекты в полупроводниковых материалах.
- 5. Технология полупроводниковых монокристаллов.
- 6. Механическая обработка материалов: резка, скрайбирование, шлифовка, полировка.

- 7. Химическая обработка полупроводниковых материалов.
- 8. Эпитаксия из жидкой фазы.
- 9. Эпитаксия из газовой фазы.
- 10. Молекулярно-лучевая эпитаксия.
- 11. Диэлектрические пленки. Окисление кремния. Осаждение диэлектрических пленок.
 - 12. Оптическая фотолитография.
 - 13. Рентгеновская фотолитография.
 - 14. Диффузия в полупроводниковой технологии.
 - 15. Ионная имплантация.
 - 16. Получение структур методом напыления.
 - 17. Технология аморфных и стеклообразных полупроводников.
 - 18. Полупроводниковые гетероструктуры.
- 19. Изготовление межэлементных соединений. Защита поверхности полупроводниковых структур.

Примеры **заданий** и **контрольных вопросов** к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями.

Лабораторная работа № 1

Порядок выполнения работы

Провести моделирование процесса термического окисления кремния с помощью программы, созданной в среде NI LabVIEW (рис. 1.6): исследовать влияние различных факторов на процесс окисления.

Рис. 1.6. Главный вид программы для выполнения виртуального эксперимента

Варианты заданий представлены в табл. 1.4 и табл. 1.5.

Таблица 1.4

No	Режим	Si	х, нм	P_1 , атм	P_2 , атм	<i>T</i> ₁ , °C	T2, °C
	окисления						
1	Сухой	100	20	2,7	1,2	938	1062
2	Влажный	111	510	1,6	3,0	1017	119
3	Сухой	110	10	1,0	2,9	1113	1045
4	Влажный	100	260	3,2	2,1	1167	1112
5	Сухой	111	22	1,1	2,2	1133	916
6	Влажный	110	651	1,5	1,1	992	957
7	Сухой	100	45	2,0	3,3	949	1003
8	Влажный	111	399	1,7	1,0	967	1027
9	Сухой	110	25	2,8	2,5	919	976
10	Влажный	100	288	3,0	1,9	1067	999

11	Сухой	111	58	3,4	3,4	1181	923

12	Влажный	110	333	2,2	3,3	1112	1143
13	Сухой	100	34	1,2	3,7	931	939
14	Влажный	111	700	2,6	3,5	1131	996
15	Сухой	110	60	1,6	3,6	1200	1076
16	Влажный	100	513	2,5	1,8	1060	1109
17	Сухой	111	37	1,0	2,8	970	929
18	Влажный	110	271	1,8	1,4	940	1085
19	Сухой	100	42	1,6	2,4	1035	1046
20	Влажный	111	630	1,4	2,4	1199	1182

Таблица 1.5

No॒	Si	Траб.кам., °С	Р, атм	t ₁ , ч	t2, ч	t3, ч
1	111	1062	1,2	0,81	1,50	2,31
2	100	1190	1,6	0,36	1,10	1,47
3	110	1045	2,9	0,60	1,30	1,90
4	110	1112	2,1	0,64	1,00	1,70
5	100	916	2,2	0,68	1,20	3,00
6	111	957	1,1	0,99	1,50	2,00
7	100	1003	3,3	0,52	1,20	1,75
8	100	1027	1,0	0,82	1,40	2,10
9	111	976	2,5	0,48	1,00	1,70
10	110	999	1,9	0,30	1,00	1,50
11	111	923	3,4	0,59	1,30	2,10
12	100	1143	3,3	0,73	1,10	1,56
13	100	939	3,7	0,65	1,25	2,13
14	110	996	3,1	1,00	1,50	3,00
15	111	1076	3,6	0,62	1,15	2,20
16	110	1109	1,8	0,83	1,33	2,60
17	100	929	2,8	0,56	1,20	2,00
18	110	1085	1,4	0,33	1,12	1,90
19	111	1046	2,4	0,80	1,43	2,80
20	100	1182	1,3	0,67	1,00	1,61

- 1. Запустите программу моделирования. Далее нажмите кнопку для перехода в главное меню виртуального стенда.
- 2. Выберите кристаллографическую ориентацию кремниевой подложки согласно варианту задания (рис. 1.7). Нажмите кнопку «Далее».

Рис. 1.7. Выбор кристаллографической ориентации

- 3. Выберите режим окисления: «В сухом O₂» или «Во влажном O₂» согласно варианту задания, представленному в табл. 1.4. В появившемся окне введите все необходимые исходные данные (табл. 1.4).
- 3.1. Установите значения температуры T_1 и давления P_1 в рабочей камере установки. Произведите моделирование процесса. Для этого нажмите на первый (для режима сухого O_2) или второй кран (для режима влажного O_2), показанные на функциональной схеме (рис. 1.8). Получив необходимую толщину SiO_2 , остановите процесс повторным нажатием на кран. Сохраните график роста пленки, щелкнув по нему правой кнопкой мыши. Выберите Export \to ExportDatatoExcel. По полученным числовым значениям постройте график зависимости толщины пленки окисла от времени окисления.

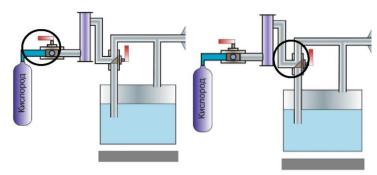


Рис. 1.8. Функциональная схема

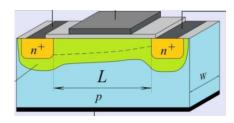
- 3.2. Нажмите кнопку «Назад». Измените значения давления и температуры на P_2 и T_2 (табл. 1.4) соответственно и повторите действия п. 3.1. Сравните результаты и сделайте выводы о влиянии давления и температуры на рост пленки.
- 4. Проведите моделирование процесса окисления в режиме «Комбинированный». Установите исходные значения согласно варианту задания (табл. 1.5). Для начала процесса на функциональной схеме поверните первый кран для запуска окисления в сухом O_2 . Затем поверните второй кран на схеме для окисления во влажном O_2 . Далее закройте второй кран для продолжения окисления кремния только в сухом O_2 . Сохраните график роста пленки.
 - 5. Занесите в отчет исходные данные и результаты экспериментов в виде графиков зависимостей.

4. Контрольные вопросы

- 1. Какова роль окисления пленок в технологии ИМС?
- 2. Опишите физическую сущность процесса термического окисления кремния.
- 3. Перечислите особенности режимов окисления кремния.
- 4. Какие параметры влияют на скорость окисления и как?
- 5. Какие существуют модели описания роста окисла кремния?
- 6. В чем суть и отличия моделей Дила Гроува и Массоуда?
- 7. Расскажите о методах окисления диэлектрических пленок на по верхности кремниевых подложек.
- 8. В чем преимущества и недостатки методов сухого, влажного окис ления кремния?

Полный перечень заданий и вопросов к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями, приведен в соответствующих методических указаниях.

Авачев А.П., Воробьев Ю.В.,	Техника и технологии полупроводников: методические	Рязань: РИЦ РГРТУ, 2021,	https://elib. rsreu.ru/ebs/
Зубков М.В.,	указания к лабораторным работам № 1 и № 2	F1 F1 y, 2021,	download/3152?
Рыбин Н.Б.,			
Рыбина Н.В.			
Авачев А.П., Воробьев Ю.В., Зубков М.В., Рыбин Н.Б., Рыбина Н.В.	Техника и технологии полупроводников: методические указания к лабораторным работам № 3 и № 4	Рязань: РИЦ РГРТУ, 2021,	https://elib. rsreu.ru/ebs/ download/3153?


Список типовых контрольных вопросов для оценки уровня сформированности знаний, умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 1. Планарная полупроводниковая технология
- 2. Методы очистки полупроводниковых материалов.
- 3. Синтез полупроводниковых соединений.
- 4. Дефекты в полупроводниковых материалах.
- 5. Технология полупроводниковых монокристаллов.

- 6. Механическая обработка материалов: резка, скрайбирование, шлифовка, полировка.
- 7. Химическая обработка полупроводниковых материалов.
- 8. Эпитаксия из жидкой фазы.
- 9. Эпитаксия из газовой фазы.
- 10. Молекулярно-лучевая эпитаксия.
- 11. Диэлектрические пленки. Окисление кремния. Осаждение диэлектрических пленок.
- 12. Оптическая фотолитография.
- 13. Рентгеновская фотолитография.
- 14. Диффузия в полупроводниковой технологии.
- 15. Ионная имплантация.
- 16. Получение структур методом напыления.
- 17. Технология аморфных и стеклообразных полупроводников.
- 18. Полупроводниковые гетероструктуры.
- 19. Изготовление межэлементных соединений. Защита поверхности полупроводниковых структур.

Типовые тестовые задания для укрепления и проверки теоретических знаний, развития умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 1. на рисунке представлен:
 - 1. Интегральный биполярный транзистор;
- 2. Интегральный полевой транзистор;
- 3. Интегральный резистор;
- 4. Интегральный диод.

- 2. К основным технологическим операциям производства ИМС относятся:
- 1. Легирование полупроводника, фотолитография, химическая обработка поверхности;
- 2. Экспонирование фоторезиста, локальное окисление поверхности полупроводника, эпитаксия;
 - 3. Эпитаксия из газовой фазы, сушка фоторезиста, удаление защитного окисла;
- 4. Эпитаксия, локальное легирование полупроводника, удаление защитного окисла.
 - 3. Топология схемы формируется в процессе:
 - 1. Эпитаксии из газовой фазы;
- 2. жидкостной эпитаксии;
- 3. молекулярно-лучевой эпитаксии;
- 4. фотолитографии.
- 4. Для создания определенного типа проводимости в полупроводнике используются:
 - 1. Полупроводниковые соединения;
- 2. элементарные полупроводники;

3. легирующие элементы;

- 4. пассивирующие элементы.
- 5. Характерной особенностью некристаллического полупроводника является:
 - 1. наличие дальнего порядка;
- 2. наличие ближнего порядка;
- 3. наличие среднего порядка;
- 4. отсутствие дальнего порядка.
- 6. К элементарным полупроводникам относятся:

- 1. Si, Ge, Sb;
- 2. Si, Ge, Au;
- 3. Si, Ge, Al;
- 4. Si, Ge, Ni.
- 7. Полупроводниковое соединение InGaAs является твердым раствором, состоящим из:
- 1. InGa и As;
- 2. InAs и InGa;
- 3. InAs и GaAs; 4. InGa и

GaAs.

- 8. Структурные дефекты и примеси влияют на:
 - 1. Электрофизические свойства полупроводниковых кристаллов;
 - 2. Механические свойства полупроводниковых кристаллов;
 - 3. Все вышеперечисленные свойства;
 - 4. Ни одни из вышеперечисленных свойств.
- 9. К точечным дефектам относятся:
- 1. вакансии, междоузельные атомы основного вещества, примесные атомы в узлах и междоузлиях, антиструктурные дефекты, комплексы из простых точечных дефектов;
- 2. вакансии, междоузельные атомы основного вещества, примесные атомы в узлах и междоузлиях, антиструктурные дефекты, дислокации;
- 3. вакансии, двойники, примесные атомы в узлах и междоузлиях, антиструктурные дефекты, комплексы из простых точечных дефектов;
- 4. вакансии, междоузельные атомы основного вещества, поры, антиструктурные дефекты, комплексы из простых точечных дефектов.
 - 10. К линейным дефектам относятся:
- 1. малоугловые границы;
- 2. дислокации;
- 3. дефекты Шоттки;

4.

вакансии.

Критерии оценивания тестовых заданий

Таблица 1 - Критерии оценивания промежуточной аттестации

Шкала оценивания	Критерии оценивания
«отлично»	≥ 90 % правильных ответов
«хорошо»	≥ 75 % правильных ответов
«удовлетворительно»	≥ 50 % правильных ответов
«неудовлетворительно»	< 50 % правильных ответов

Фонд оценочных средств входит в состав рабочей программы дисциплины «Физические основы фотоники», направление подготовки — 03.03.01 «Прикладные математика и физика», ОПОП «Электроника, квантовые системы и нанотехнологии».

Составила

доцент кафедры

микро- и наноэлектроники

Рыбин Н.Б.

Зав. кафедрой

микро- и наноэлектроники,

д.ф.-м.н., доцент Литвинов В.Г.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ФГБОУ ВО "РГРТУ", РГРТУ, Литвинов Владимир Георгиевич, Заведующий кафедрой МНЭЛ СОГЛАСОВАНО

15.09.25 13:03 (MSK)

Простая подпись