МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Радиотехнические устройства»

«СОГЛАСОВАНО»

Декан факультета РТ

/ И.С. Холопов

« <u>15</u>» <u>06</u> 20 <u>19</u> г Заведующий кафедрой РТУ

«УТВЕРЖДАЮ» Проректор РОПиМД / А.В. Корячко

20 /9 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.11 «Широкополосные системы передачи радионавигационной информации»

Направление подготовки 11.05.01. «Радиоэлектронные системы и комплексы»

Направленность (профиль) подготовки «Радионавигационные системы и комплексы»

Уровень подготовки специалитет

Квалификация выпускника – инженер

Формы обучения - очная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки 11.05.01 «Радиоэлектронные системы и комплексы» профиль «Радионавигационные системы и комплексы», утвержденного 9 февраля 2018 г.

Разработчик доцент кафедры радиотехнических устройств, к.т.н. Ксендзов Александр Валентинович
(подпись)
Рассмотрена и утверждена на заседании кафедры «30» мая 2019 г., протокол № 10
Заведующий кафедрой радиотехнических устройств Паршин Юрий Николаевич
(подпись)

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы специалитета

Цель изучения дисциплины: получение представления и прикладных знаний о современных методах беспроводной передачи информации, используемых в радионавигационных системах, а также о тенденциях развития технологий и систем беспроводной передачи информации.

Задачи изучения дисциплины распределены между пятью ее модулями, изучаемыми в 9-м (16 недель) и 10-м (15 недель) семестрах соответственно по очной форме обучения.

Задачи модуля 1: изучить принципы стандартизации систем радиосвязи, получить основные сведения о действующих и перспективных стандартах в области связи, Регламенте радиосвязи, изучить топологию и архитектуру беспроводных сетей связи.

Задачи модуля 2: изучить математические модели канала связи, виды цифровой модуляции, принципы обработки и детектирования цифровых радиосигналов и оптимального оценивания принятых символов.

Задачи модуля 3: изучить принципы помехоустойчивого кодирования, декодирования с исправлением ошибок, основные виды помехоустойчивых кодов.

Задачи модуля 4: изучить системы синхронизации по несущей частоте, символам и кадрам.

Задачи модуля 5: изучить системы с расширением спектра, синхронизацию и удержание с помощью псевдослучайных последовательностей, устойчивость данных систем к разрушению информации; изучить методы разделения информации и компоновки группового сигнала с цифровыми видами модуляции.

Перечень основных задач профессиональной деятельности выпускников (потипам)

Область профессиональной деятельности (по Реестру Минтруда)	Типы задач профессиональной деятельности	Задачи профессиональной деятельности	Объекты профессиональной деятельности (или области знания)
06 Связь,	научно-	Анализ научно-	Радиолокация,
информационные и	исследовательский	технической проблемы на	радиосвязь,
коммуникационные		основе подбора и	радиоуправление,
технологии		изучения литературных и	радионавигация,
		патентных источников;	лазерная техника,
		математическое и	антенная техника,
		компьютерное	радиоэлектронные
		моделирование	системы космических
		радиоэлектронных	комплексов, бортовые
		устройств и систем с	радиоэлектронные
		целью оптимизации	системы ракетно-
		(улучшения) их	космической техники,
		параметров; разработка	гидроакустические
		методики и проведение	системы и комплексы,
		исследований и	эксплуатация
		измерений параметров и	авиационных
		характеристик изделий	радиоэлектронных
		электронной техники,	систем и комплексов
		анализ их результатов;	связи, проектирование
		разработка физических и	и технология

7			1
		математических моделей,	радиоэлектронных
		компьютерное	систем и комплексов
		моделирование	
		исследуемых физических	
		процессов, приборов,	
		схем и 9 устройств,	
		относящихся к	
		профессиональной сфере;	
		подготовка научно-	
		технических отчетов,	
		обзоров, рефератов,	
		публикаций по	
		результатам выполненных	
		исследований, подготовка	
		и представление докладов	
		на научные конференции	
		и семинары; фиксация и	
		защита объектов	
		интеллектуальной	
		собственности.	
П	роектный	Проведение технико-	Радиолокация,
	•	экономического	радиосвязь,
			радиоуправление,
		сбор и анализ исходных	* * *
		данных для расчета и	F
		проектирования	антенная техника,
		-	радиоэлектронные
			системы космических
		различного	комплексов, бортовые
		↑	· •
		функционального	радиоэлектронные
		, 1	системы ракетно-
		проектирование	космической техники,
			гидроакустические
			системы и комплексы,
		различного	эксплуатация
		функционального	авиационных
			радиоэлектронных
		соответствии с	систем и комплексов
		техническим заданием с	связи, проектирование
		использованием средств	и технология
		автоматизации	радиоэлектронных
		проектирования;	систем и комплексов
		разработка и	
		согласование технических	
		заданий на	
		проектирование	
		технических условий,	
		программ и методик	
		программ и методик испытаний	
		радиоэлектронных	
		устройств и систем;	

1	T
разработка структурных и	
функциональных схем	
радиоэлектронных систем	
и комплексов,	
принципиальных схем	
устройств с	
использованием средств	
компьютерного	
проектирования,	
проведением проектных	
расчетов и технико-	
экономическим	
обоснованием	
принимаемых решений;	
подготовка	
конструкторской и	
технической	
документации, включая	
инструкции по	
эксплуатации, программы	
испытаний и технические	
условия	

2. Место дисциплины в структуре ООП

Дисциплина «Широкополосные системы передачи радионавигационной информации» относится к вариативной части блока №1 дисциплин основной образовательной программы (ООП) «Радионавигационные системы и комплексы» по специальности 11.05.01 Радиоэлектронные системы и комплексы.

Студенты, обучающиеся по данному курсу, должны предварительно изучить дисциплины «Математика», «Информатика», входящие в базовую часть математических и естественнонаучных дисциплин рабочего учебного плана по специальности 11.05.01 Радиоэлектронные системы и комплексы для всех ООП данной специальности, дисциплину «Информационные технологии в инженерной практике», входящую в вариативную часть рабочего учебного плана, дисциплины «Радиотехнические цепи и сигналы», «Цифровые устройства и микропроцессоры», входящие в базовую часть профессиональных дисциплин рабочего учебного плана, дисциплину «Цифровая обработка сигналов», входящую в вариативную часть профессиональных дисциплин рабочего учебного плана.

В результате изучения дисциплины студенты должны:

- иметь представления об основных направлениях и тенденциях развития методов и технических средств беспроводной передачи информации;
- знать современные и перспективные направления развития систем радиосвязи и средств беспроводной передачи информации;
- знать принципы организации передачи информации в радионавигационных системах;
- знать особенности передачи сигналов с разной модуляцией по радио каналам и трактам;
- уметь выполнять выбор параметров систем радиосвязи, обеспечивающих заданное качество ее передачи;
- владеть навыками моделирования систем радиосвязи с использованием пакетов прикладных программ.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с $\Phi \Gamma OC$ BO, $\Pi OO\Pi$ (при наличии) по данному направлению подготовки, а также компетенций (при наличии), установленных университетом.

Рекомендуемые профессиональные компетенции выпускников и индикаторы их достижения (при наличии)

Задача ПД	Объект или область знания	Код и наименование профессиональной компетенции	Код и наименование индикатора достижения профессиональной компетенции	Обоснование (ПС, анализ опыта)
			вигационные системы	
	офессиона		научно-исследовательс	
Разработка методики		ПК7. Способен	ИД- $1_{\Pi K-7}$. Знать	06.005 Ин-
и проведение		к реализации	принципы	женер- ра-
исследований и		программ	планирования	диоэлек-
измерений		экспериментальны	экспериментальных	тронщик
параметров и		х исследований, в	исследований	
характеристик		том числе в	ИД- $2_{\Pi K-7}$. Уметь	
изделий электронной		режиме	обосновывать	
техники, анализ их		удаленного	программу	
результатов.		доступа, включая	эксперимента,	
Разработка		выбор	обрабатывать	
физических и		технических	результаты	
математических		средств, обработку	эксперимента,	
моделей,		результатов и	оценивать	
компьютерное		оценку	погрешности	
моделирование		погрешности	экспериментальных	
исследуемых		экспериментальны	данных	
физических		х данных	ИД- $3_{\Pi K-7}$. Владеть	
процессов, приборов,			техникой	
схем и устройств,			проведения	
относящихся к			экспериментальных	
профессиональной			исследований	
сфере				

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетных единиц (144 часов).

	Всего часов		
Вид учебной работы	Очная	Очно-заочная	Заочная
	форма	форма	форма
Общая трудоемкость	144		
дисциплины, в том числе:	144	_	_
Контактная работа	48	_	_

обучающихся с преподавателем			
(всего), в том числе:			
Лекции	32	_	_
Лабораторные работы	16	_	_
Практические занятия	_	_	_
Самостоятельная работа			
обучающихся (всего), в том	96	_	_
числе:			
Самостоятельные занятия	87	_	_
Консультации в семестре	9	_	_
Экзамены и консультации	_	_	_
Контрольные работы	_	_	_
Вид промежуточной аттестации обучающихся	Зачет	_	_

4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

В структурном отношении программа представлена следующими модулями:

Модуль 1. Стандартизация и архитектура систем передачи информации.

Модуль 2. Цифровая модуляция.

Модуль 3. Канальное кодирование.

Модуль 4. Синхронизация.

Модуль 5. Методы расширения спектра и канального уплотнения.

4.1 Содержание дисциплины, структурированное по темам (разделам)

Раздел дисциплины	Содержание раздела
(модуля)	
Модуль 1. Стандартизация и	Определение информации. Радиочастотный ресурс как
архитектура систем передачи	носитель информации: пространственная, временная,
информации	частотная составляющие. Определение системы
1.1. Определения информации и	передачи информации, обобщенная структурная схема.
системы передачи информации.	Организации, выпускающие стандарты в области
Стандартизация. Эталонная	телекоммуникаций: ISO, ITU(МСЭ), IEEE, ETSI.
модель взаимодействия	Семиуровневая эталонная модель взаимодействия
открытых систем ISO/OSI.	открытых систем ISO/OSI. Описание уровней:
	прикладной, представительский, сеансовый,
	транспортный, сетевой, канальный, физический.
1.2. Регламент радиосвязи.	Международный Регламент радиосвязи ITU(МСЭ):
Внеполосные излучения.	основное содержание, порядок утверждения и
	внесения изменений. Дополнения в виде
	Рекомендаций ITU(МСЭ). Регламент радиосвязи РФ:
	основное содержание, условное обозначение
	необходимой ширины полосы и видов модуляции.
	Регламентирование внеполосных излучений, маска
	огибающей спектра модулированного сигнала.
1.3. Основные топологии систем	Базовые топологии беспроводных сетей передачи
передачи информации.	информации: каждый-с-каждым, радиальный (звезда),

Doorn to yn gody yn g gody on goy	
Взаимоувязанная сеть связи.	радиально-узловой, радиально-узловой с узловыми
Логическая архитектура систем	районами, кольцевой. Взаимоувязанная сеть связи,
передачи информации.	включающая магистральные, территориальные
	(внутризоновые), местные и локальные первичные
	сети. Логическая архитектура абонентских
	радиотерминалов и базовых станций. Обобщенная
	логическая архитектура локальных и территориальных
	сетей. Адаптация структуры к воздействию помех.
16 2 17 1	Поддержка мобильности пользователей.
Модуль 2. Цифровая модуляция	Модели радиосигналов. Линейный узкополосный и
2.1. Математические модели	широкополосный канал связи с мультипликативной
канала связи. Модели в	помехой и аддитивным белым гауссовским шумом.
непрерывном и дискретном	Межсимвольная интерференция. Временная
времени с аддитивным шумом.	непрерывная, временная дискретная модель канала
	связи. Представление узкополосного сигнала в
	ортонормированном базисе.
2.2. Комплексная дискретная	Комплексная дискретная модель канала связи.
модель. Квадратурная	Принципы построения демодуляторов сигналов с
корреляционная обработка	цифровой модуляцией на основе квадратурных
сигнала и шума. Диаграмма	корреляторов. Преобразование сигнала и шума в
рассеяния шума.	корреляционном канале, обработка линейным
	фильтром, фильтром интегрирования и сброса.
	Функция плотности распределения вероятности и
	диаграмма рассеяния аддитивного белого гауссовского
	шума на выходе коррелятора в комплексном
	представлении.
2.3. Виды цифровой модуляции.	Позиционность и спектральная эффективность.
Представление в виде созвездий.	Амплитудная манипуляция (ASK), фазовая
Использование формирующих	манипуляция (BPSK, QPSK, M-PSK), амплитудно-
фильтров.	фазовая манипуляция (APSK), квадратурная
	амплитудная манипуляция (M-QAM). Созвездия,
	применение кода Грея. Частотная манипуляция с
	непрерывной фазой (CPFSK), дифференциальная
	(DQPSK). Применение формирующих фильтров
	(гауссовский, «приподнятый косинус»).
2.4. Оптимальное оценивание	Основные эффекты канала в беспроводных системах
переданного символа. Условная	передачи информации (неопределенность фазы,
функция плотности вероятности.	многолучевость и замирания, межсимвольная
Правило Байеса и эквивалентные	интерференция, аддитивный шум) и борьба с ними
правила сравнения метрик.	(синхронизация по несущей и символам,
_	автоматическая регулировка усиления или решающего
	порога, эквализация, метод максимального
	правдоподобия). Реализация метода МП через правило
	Байеса по максимуму функции правдоподобия,
	минимуму дистанционной метрики, максимуму
	корреляционной метрики. Выравнивание по энергии
	символа.
2.5. Критерий качества цифровой	Зависимость вероятности символьной и битовой
связи. Вероятность ошибки.	ошибки от последетекторного отношения сигнал-шум
Сравнение систем связи с	на символ или бит. Теоретические формулы
различной конфигурацией.	вероятности битовой ошибки для BPSK и QPSK;
	случай с замираниями. Коэффициент ошибок (BER),

	оценка BER по выборке с построением доверительных
	интервалов. Сравнение помехоустойчивости систем с
	различными видами модуляции и скоростью кода с
	использованием зависимости BER(SNR).
Модуль 3. Канальное	Общие принципы кодирования. Определение
кодирование	систематических и несистематических кодов, скорости
3.1. Принципы	кода, избыточности кода, синдрома. Сигнатура кода.
помехоустойчивого кодирования	Разрешенные и запрещенные кодовые комбинации.
и основные определения.	Минимальное кодовое расстояние.
Коррекция ошибок.	-
3.2. Линейное кодирование.	Определение линейного кода. Представление
Концепция сигнально-кодовых	разрешенных и запрещенных кодовых комбинаций в
пространств. Ортогональные	многомерном базисе. Расстояние Хэмминга.
коды.	Использование метода МП, дистанционных и
	корреляционных метрик, структура многоканальных
	корреляторов. Построение ортогонального кода на
	основе функций Уолша и матрицы Адамара.
3.3. Линейные систематические	Блочное представление линейного кодирования,
коды. Код с проверкой четности,	порождающая (генераторная) и проверочная матрицы,
код Хэмминга.	синдром. Код с проверкой четности. Код Хэмминга
	(3,1) и (7,4). Условие оптимальности кода.
	Расширенный код Хэмминга. Код, восстанавливающий
	пачки ошибок.
3.4. Основы теории конечных	Полиномиальное представление чисел. Определение
полей	поля, кольца, конечного автомата, идеала, конечного
	поля. Операция приведения по модулю. Построение
	расширенного конечного поля, порождающий
	полином. Использование операции деления
	полиномов. Пример конечного автомата - генератор
	ПСП, диаграмма состояний.
3.5. Двоичные циклические	Определение. Реализация циклического сдвига на
коды.	основе операции приведения по модулю.
	Порождающий полином, порождающая и проверочная
	матрицы. Проверка кодовой комбинации с помощью
	порождающего полинома. Оценивание полинома
	ошибки с помощью синдрома и исправление ошибки.
3.6. Недвоичные циклические	RS код, полиномиальное представление,
коды. Код Рида-Соломона.	использование расширенного конечного поля для
	построения. Составление порождающего полинома и
	вычисление синдрома. Составление и решение
	системы уравнений относительно полинома ошибки в
	два этапа и исправление ошибки.
3.7. Сверточное кодирование.	Сверточные коды. Представление кодера в виде
Алгоритм Витерби. Жесткая и	векторов связей, структурная схема. Представление в
мягкая схемы принятия	виде диаграммы состояний, древовидной диаграммы,
решений.	решетчатой диаграммы. Правило МП по отношению к
-	гипотетическим траекториям. Алгоритм сверточного
	декодирования Витерби. Использование кодового
	ограничения для уменьшения вычислительных затрат;
	«выжившие» траектории. Мягкая и жесткая схема
	принятия решений.
3.8. Турбо-коды. Перемежение.	Структура турбо-кода. Перемежение. Декодирование с

Выкалывание и адаптивная	использованием логарифмического отношения
скорость кода.	правдоподобия. Адаптация к условиям канала связи,
скорость кода.	регулировка скорости с помощью выкалывания.
Модуль 4. Синхронизация	Определение синхронизации. Синхронизация передат-
4.1. Определение и классифика-	чика и приемника. Синхронизация по несущей, по
ция видов синхронизации. Син-	символам, по кадрам. Частотная и фазовая автопод-
хронизация по несущей, по сим-	стройка частоты.
волам, по кадрам.	
4.2. Системы частотной и фазо-	Назначение системы автоподстройки частоты и ее ме-
вой автоподстройки частоты.	сто в рамках общей структуры системы передачи ин-
Петля Костаса. Захват и началь-	формации. Принципы построения петли автоматиче-
ная синхронизация. Ошибка от-	ской подстройки частоты. Дискриминатор, управляе-
слеживания несущей.	мый элемент, петлевой фильтр. Порядок астатизма.
	Частотная и фазовая автоподстройка частоты. Полоса
	захвата и полоса удержания. Синфазно-квадратурная
	схема Костаса. Подавление несущей. Ошибка сопро-
4.3. Символьная синхронизация	вождения. Петли, управляемые решениями. Символьная синхронизация разомкнутого (нелинейная
разомкнутого и замкнутого типа.	на фильтрах) и замкнутого (с опережающим и запаз-
Синхронизация систем с моду-	дывающим стробированием) типа. Ошибки символь-
ляцией без разрыва фазы. Ис-	ной синхронизации, их влияние на зависимость
пользование данных. Кадровая	BER(SNR). Синхронизация систем с модуляцией без
синхронизация.	разрыва фазы. Синхронизация с использованием (DA)
	и без использования (NDA) данных. Кадровая синхро-
	низация. Маркер кадра. Синхронизирующие кодовые
	слова Баркера и Уилларда. Сетевая синхронизация: от-
16 5 16	крытая и замкнутая синхронизация на передатчиках.
Модуль 5. Методы расширения	Цели расширения спектра. Определение и классифи-
спектра и канального уплотнения	кация методов расширения спектра. Метод прямой последовательности. Метод скачкообразной перестройки
5.1. Основные определения. Ме-	частоты. Псевдослучайные расширяющие последова-
тоды расширения спектра. Псев-	тельности. Генераторы ПСП, свойства порождающего
дослучайные последовательно-	полинома. Свойства ПСП: сбалансированность, цик-
сти, их свойства.	личность, корреляция. АКФ ПСП.
5.2. Методы прямой последова-	Метод прямой последовательности. Структурные схе-
тельности и скачкообразной пе-	мы модулятора и демодулятора на примере BPSK.
рестройки частоты. Коэффици-	Пример временной диаграммы. Метод скачкообразной
ент расширения спектра. Произ-	перестройки частоты. Структурные схемы модулятора
водительность.	и демодулятора на примере M-FSK. Скрытие сигнала
	от разрушающего воздействия помех в многомерном
	линейном пространстве. Устойчивость. Функции бази-
	са, структура многоканальных корреляторов. Коэффициент расширения спектра и производительность.
5.3. Синхронизация в системах с	Первоначальная синхронизация. Последовательный и
расширенным спектром. Исполь-	параллельный поиск. Структурные схемы коррелято-
зование свойств ПСП, первона-	ров в методе прямой последовательности, в методе
чальная синхронизация, сопро-	скачкообразной перестройки частоты. Петли сопро-
вождение.	вождения с задержкой и опережением (DLL), петля с
	дизером (TDL). Преимущества и недостатки схем.
5.4. Виды уплотнения и множе-	Частотное (FDMA), временное (TDMA), кодовое
ственного доступа.	(CDMA) разделение. Ортогонализация несущих в
	OFDM.Эмпирические модели распространения сигна-

ла:	Okumura-Hata,	Davidson-Epstein-Peterson,	Kelly,
Wal	fish-Bertoni.		

4.2. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах) для очной формы обучения

№ п/п	Тема	Общая трудоем кость, всего часов	всего	обуча	тная работа ающихся одавателем лаборат орные работы	практич еские занятия	Самост оятельн ая работа обучаю щихся
1	2	3	4	5	6	7	8
	Всего	180	62	47	15	-	118
	9-й семестр	117	47	32	15		70
	Модуль 1. Стандартизация и архитектура систем передачи информации	21	7	6	1		14
1.1	Определения информации и системы передачи информации. Стандартизация. Эталонная модель взаимодействия открытых систем ISO/OSI.	6	2	2			4
1.2	Регламент радиосвязи. Внеполосные излучения.	8	3	2	1		5
1.3	Основные топологии систем передачи информации. Взаимоувязанная сеть связи. Логическая архитектура систем передачи информации.	7	2	2			5
	Модуль 2 Цифровая модуляция	42	17	10	7		25
2.1	Математические модели канала связи. Модели в непрерывном и дискретном времени с аддитивным шумом.	8	3	2	1		5
2.2	Комплексная дискретная модель. Квадратурная корреляционная	8	3	2	1		5

	обработка сигнала и шума. Диаграмма рассеяния шума.					
2.3	Виды цифровой модуляции.	8	3	2	1	5
	Представление в виде созвездий. Использование формирующих					
	фильтров.					
2.4	Оптимальное оценивание переданного символа. Условная	9	4	2	2	5
	функция плотности вероятности.					
	Правило Байеса и эквивалентные					
	правила сравнения метрик.					
2.5	Критерий качества цифровой	9	4	2	2	5
	связи. Вероятность ошибки. Сравнение систем связи с раз-					
	личной конфигурацией.					
	Модуль 3	54	23	16	7	31
	Канальное кодирование					
3.1	Принципы помехоустойчивого	6	3	2	1	3
	кодирования и основные опреде-					
3.2	ления. Коррекция ошибок. Линейное кодирование. Концеп-	7	3	2	1	4
3.2	ция сигнально-кодовых про-	,			1	'
	странств. Ортогональные коды.					
3.3	Линейные систематические коды.	7	3	2	1	4
	Код с проверкой четности, код					
3.4	Хэмминга. Основы теории конечных полей	6	2	2		4
3.5	Двоичные циклические коды.	7	3	2	1	4
3.6	Недвоичные циклические коды.	7	3	2	1	4
	Код Рида-Соломона.					
3.7	Сверточное кодирование. Алго-	8	4	2	2	4
	ритм Витерби. Жесткая и мягкая					
3.8	схемы принятия решений. Турбо-коды. Перемежение. Вы-	6	2	2		4
3.0	калывание и адаптивная ско-		2	2		-
	рость кода.					
	10-й семестр	63	15	15		48
	Модуль 4.	28	7	7		21
	Синхронизация					
4.1	Определение и классификация	8	2	2		6
	видов синхронизации. Синхро-					
	низация по несущей, по символам, по кадрам.					
4.2	Системы частотной и фазовой	9	2	2		7
	автоподстройки частоты. Петля					
	Костаса. Захват и начальная син-					
	хронизация. Ошибка отслежива-					
4.3	ния несущей. Символьная синхронизация	11	3	3		8
4.3	Символьная синхронизация	11	J	ر		O

	разомкнутого и замкнутого типа. Синхронизация систем с модуляцией без разрыва фазы. Использование данных. Кадровая синхронизация.					
	Модуль 5. Методы расширения спектра и канального уплотнения	35	8	8		27
5.1	Основные определения. Методы расширения спектра. Псевдослучайные последовательности, их свойства.	8	2	2		6
5.2	Методы прямой последовательности и скачкообразной перестройки частоты. Коэффициент расширения спектра. Производительность.	9	2	2		7
5.3	Синхронизация в системах с расширенным спектром. Использование свойств ПСП, первоначальная синхронизация, сопровождение.	9	2	2		7
5.4	Виды уплотнения и множественного доступа.	9	2	2		7

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 1. Пуговкин А.В. Телекоммуникационные системы [Электронный ресурс] : учебное пособие / А.В. Пуговкин. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2007. 202 с. 5-86889-337-9. Режим доступа: http://www.iprbookshop.ru/13983.html
- 2. Берлин А.Н. Высокоскоростные сети связи [Электронный ресурс] / А.Н. Берлин. Электрон. текстовые данные. М. : Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 437 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/57378.html
- 3. Уэйн Томаси. Электронные системы связи [Электронный ресурс] / Томаси Уэйн. Электрон. текстовые данные. М.: Техносфера, 2016. 1360 с. 978-5-94836-125-3. Режим доступа: http://www.iprbookshop.ru/58897.html
- 4. Сети и системы радиосвязи и средства их информационной защиты: методические указания к лаб. раб. / Рязан. гос. радиотехн. ун-т; сост. Ю.Н. Паршин, А.В. Ксендзов. Рязань, 2010. 32 с.
- 5. Методы и средства измерения в телекоммуникационных системах: методические указания к лаб. раб. / Рязан. гос. радиотехн. ун-т; сост. Е.В. Васильев, А.В. Ксендзов. Рязань, 2014. 64 с.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине представлен в виде оценочных материалов и приведен в Приложении.

7. Перечень основной и дополнительной учебной литературы, необходимой лля освоения лиспиплины

а) основная:

- 1. Пуговкин А.В. Телекоммуникационные системы [Электронный ресурс] : учебное пособие / А.В. Пуговкин. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2007. 202 с. 5-86889-337-9. Режим доступа: http://www.iprbookshop.ru/13983.html
- 2. Берлин А.Н. Высокоскоростные сети связи [Электронный ресурс] / А.Н. Берлин. Электрон. текстовые данные. М. : Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 437 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/57378.html
- 3. Уэйн Томаси. Электронные системы связи [Электронный ресурс] / Томаси Уэйн. Электрон. текстовые данные. М. : Техносфера, 2016. 1360 с. 978-5-94836-125-3. Режим доступа: http://www.iprbookshop.ru/58897.html
- 4. Маглицкий Б.Н. Эффективность методов модуляции в цифровых системах радиосвязи [Электронный ресурс] : монография / Б.Н. Маглицкий. Электрон. текстовые данные. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2011. 187 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/45497.html
- 5. Сети и системы радиосвязи и средства их информационной защиты: методические указания к лаб. раб. / Рязан. гос. радиотехн. ун-т; сост. Ю.Н. Паршин, А.В. Ксендзов. Рязань, 2010. 32 с.

б) дополнительная:

- 1. Ипатов, В. Широкополосные системы и кодовое разделение сигналов. Принципы и приложения : пер. с англ. / В. Ипатов . М. : Техносфера, 2007 . 488 с.
- 2. Елисеев, С. Н. Беспроводные сети и передачи данных : учебное пособие для вузов по специальностям "Средства связи с подвижными объектами", "Защищенные системы связи", "Радиосвязь, радиовещание и телевидение" / М. : Сайнс-Пресс, 2008. 136 с.
- 3. Учебно-методическое пособие по курсу Общая теория связи [Электронный ресурс] / . Электрон. текстовые данные. М. : Московский технический университет связи и информатики, 2016. 24 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/61509.html.
- 4. Росляков А.В. Сети связи [Электронный ресурс] : учебное пособие по дисциплине «Сети связи и системы коммутации» / А.В. Росляков. Электрон. текстовые данные. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2017. 165 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/75406.html
- 5. Маглицкий Б.Н. Методы передачи данных в сотовых системах связи [Электронный ресурс] : учебное пособие / Б.Н. Маглицкий. Электрон. текстовые данные. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2013. 178 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/45479.html.
- 6. Малинкин В.Б. Адаптивная фильтрация в телекоммуникационных системах [Электронный ресурс] : учебное пособие / В.Б. Малинкин. Электрон. текстовые данные. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2017. 324 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/69533.html.
- 7. Стефанова И.А. Моделирование устройств телекоммуникаций в системе MATLAB+Simulink [Электронный ресурс] : учебное пособие / И.А. Стефанова. Электрон. текстовые данные. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2016. 94 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/71857.html.
- 8. Методы и средства измерения в телекоммуникационных системах: методические указания к лаб. раб. / Рязан. гос. радиотехн. ун-т; сост. Е.В. Васильев, А.В. Ксендзов. Рязань, 2014. 64 с.

- 9. Голиков А.М. Основы проектирования защищенных телекоммуникационных систем [Электронный ресурс] : учебное пособие для специалитета: 10.05.02 Информационная безопасность телекоммуникационных систем. Курс лекций, компьютерный практикум, компьютерные лабораторные работы и задание на самостоятельную работу / А.М. Голиков. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2016. 396 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/72158.html.
- 10. Голиков А.М. Кодирование в телекоммуникационных системах [Электронный ресурс] : учебное пособие для специалитета: 090302.65 Информационная безопасность телекоммуникационных систем. Курс лекций, компьютерный практикум, задание на самостоятельную работу / А.М. Голиков. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2016. 338 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/72111.html.

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для изучения дисциплины

Обучающимся предоставлена возможность индивидуального доступа к следующим электронно-библиотечным системам.

- 1. Электронно-библиотечная система «Лань», режим доступа с любого компьютера РГРТУ без пароля. URL: https://e.lanbook.com/
- 2. Электронно-библиотечная система «IPRbooks», режим доступа с любого компьютера РГРТУ без пароля, из сети интернет по паролю. URL: https://iprbookshop.ru/.
- 3. Электронная библиотека РГРТУ, режим доступа с любого компьютера РГРТУ без пароля. URL: http://elib.rsreu.ru/

9. Методические указания для обучающихся по освоению дисциплины

9.1. Рекомендации по планированию и организации времени, необходимого для изучения дисциплины

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Изучение конспекта лекции в тот же день, после лекции – 10-15 минут.

Изучение конспекта лекции за день перед следующей лекцией – 10-15 минут.

Изучение теоретического материала по учебнику и конспекту – 1 час в неделю.

9.2. Описание последовательности действий студента («сценарий изучения дисциплины»)

При изучении дисциплины очень полезно самостоятельно изучать материал, который еще не прочитан на лекции. Для понимания материала и качественного его усвоения рекомендуется такая последовательность действий:

- 1). После прослушивания лекции и окончания учебных занятий, при подготовке к занятиям следующего дня, нужно сначала просмотреть и обдумать текст лекции, прослушанной сегодня (10-15 минут).
- 2). При подготовке к лекции следующего дня, нужно просмотреть текст предыдущей лекции, подумать о том, какая может быть тема следующей лекции (10-15 минут).

В течение недели выбрать время (1-час) для работы с литературой в библиотеке.

9.3. Рекомендации по работе с литературой

Теоретический материал курса становится более понятным, когда дополнительно к прослушиванию лекции и изучению конспекта, изучаются и книги по педагогике высшей школы. Литературу по курсу рекомендуется изучать в библиотеке. Полезно использовать несколько учебников по курсу. Рекомендуется после изучения очередного параграфа ответить на несколько простых вопросов по данной теме.

9.4. Подготовка к лабораторным работам

- 1) При подготовке к лабораторной работе студенту рекомендуется изучить разделы лекционного курса, содержащие теоретические сведения о предмете данной лабораторной работы (см. разд.4.2, а также перечень лабораторных работ в приложении «Оценочные материалы»).
- 2) Из методического указания к лабораторным работам, а также инструкций преподавателя студент получает необходимые сведения по работе с контрольно-измерительными приборами, в том числе виртуальными, расположенными на рабочем месте.
- 3) Используя методическое указание к лабораторным работам, студенту рекомендуется заблаговременно выделить для себя методику выполнения в соответствии с вариантом или заданием преподавателя, подготовить шаблон отчета по лабораторной работе, ознакомиться с методами обработки результатов, расчета погрешностей и доверительных интервалов, составить картину ожидаемых результатов и выводов по ним, а также возможных отклонений от ожидаемых результатов и их причин.
- 4) По требованию преподавателя, студент обязан получить допуск к выполнению лабораторной работы, который включает в себя проверку теоретических знаний студента в форме ответов на вопросы, приведенные в приложении «Оценочные материалы», а также умения работать с необходимыми контрольно-измерительными приборами и обрабатывать полученные результаты.

9.5. Подготовка к сдаче зачета

Зачет — форма промежуточной проверки знаний, умений, навыков, степени освоения дисциплины. При подготовке к зачету студенту рекомендуется привести в систему знания, полученные на лекциях, в лабораториях, на практических занятиях. на консультациях с преподавателем в семестре.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)

- 1. Операционная система Windows XP (Microsoft MSDN AA, номер подписки 700102019, бессрочно);
- 2. LibreOffice (свободное ПО, Mozilla Public License 2.0, GNU Lesser General Public License 2.1, GNU Lesser General Public License 3.0, GNU General Public License 3.0);
 - 3. SumatraPDF (свободное ПО, GNU GPLv3);
- 4. Kaspersky Endpoint Security Коммерческая лицензия на 1000 компьютеров №2304-180222-115814-600-1595, срок действия с 25.02.2018 по 05.03.2019);
- 5. MATLAB, Simulink, Fuzzy Logic Toolbox (Concurrent Perpetual Classroom №365617 с 29.08.2008 бессрочно).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

- 1. Аудитория 413к2. Учебная аудитория для проведения занятий лекционного и семи-нарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. 60 мест, 1 мультимедиа проектор, 1 экран, компьютер, специализированная мебель, маркерная доска.
- 2. Аудитория 415к2. Учебная аудитория для проведения занятий лекционного и семи-нарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. 50 мест, 1 мультимедиа проектор, 1 экран, компьютер, специализированная мебель, маркерная доска.
- 3. Аудитории 501к2, 502к2, 503к2 (компьютерные классы). Аудитория для самостоя-тельной работы. Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду, специализированная мебель.
 - 4. Аудитория 410к2. Помещение для хранения и профилактического обслуживания

учебного оборудования. Шкафы, стеллажи для хранения учебного оборудования, контрольно-измерительная техника и инструменты для профилактического обслу-живания учебного оборудования.

Программу составил доцент кафедры РТУ к.т.н.

А.В. Ксендзов

Программа рассмотрена и одобрена на заседании кафедры РТУ (протокол № 9 от 01 марта 2018 г.).

Заведующий кафедрой РТУ, д.т.н., профессор

Ю.Н. Паршин