МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет имени В.Ф. Уткина»

КАФЕДРА СИСТЕМ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ СРЕДСТВ

МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

по дисциплине

«Нейрокомпьютеры»

Направление подготовки

02.04.02 Фундаментальная информатика и информационные технологии Направленность (профиль) подготовки «Нейросетевые технологии и интеллектуальный анализ данных»

> Квалификация (степень) выпускника — магистр Форма обучения — очная

Методические указания для обучающихся по освоению дисциплины

Для освоения дисциплины требуется предварительная подготовка в области программирования на любом из языков программирования высокого уровня.

Перед началом освоения учебного курса студенту рекомендуется внимательно ознакомиться с основными документами и материалами, отражающими содержание дисциплины. В частности, ему необходимо ознакомиться с рабочей программой курса, которая содержит подробное описание целей, задач и ожидаемых результатов обучения. Также важно понять, каким образом выбранная дисциплина связана с другими предметами и разделами образовательной программы, чтобы лучше усвоить её роль и значимость в рамках общего учебного плана.

Основу теоретического обучения составляют лекции, которые дают студентам систематизированные знания по сложным и важным вопросам дисциплины. Во время лекции студент должен активно слушать, вести конспект, выделять главное и, при необходимости, дополнять его моделями, схемами или графиками, а также записывать свои мысли и вопросы для дальнейшего обсуждения. Важно учиться быстро записывать информацию, сокращая слова и фразы, и при необходимости обращаться к лектору для повторения сложных участков. После лекции конспект нужно доработать в кратчайшие сроки, исправить ошибки и дополнить его, читая рекомендованную литературу и разбираясь в непонятных вопросах.

Изучение основной и дополнительной литературы является важнейшим этапом в работе над конспектом лекции по дисциплине. Основная литература обеспечивает понимание ключевых понятий, теоретических основ и базовых методов исследования, что позволяет сформировать прочную научную базу для дальнейшей работы. Дополнительная литература, в свою очередь, расширяет кругозор, помогает углубить знания, получить альтернативные точки зрения и актуальные примеры применения методов. В результате систематического изучения обеих категорий литературы студенты не только лучше усваивают материал, но и развивают аналитические и критические навыки, что существенно повышает качество их научных работ и подготовку к самостоятельному исследовательскому проекту.

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

- изучение конспекта лекции в тот же день, после лекции 10-15 минут;
- изучение теоретического материала по учебникам и конспекту не менее 1 часа в неделю в ходе подготовки к практическому занятию.

Для освоения практических навыков применения программного обеспечения для моделирования и проектирования нейросетевых систем на базе ПЛИС, желательно установить на домашнем компьютере среды HDL-моделирования цифровых устройств ModelSim и Quartus II Web Edition. Для установки программ используйте только официальные репозитарии.

Перед выполнением практического занятия необходимо внимательно ознакомиться с заданием. Желательно заранее выполнить подготовку проекта, чтобы на практическом занятии осталось время для сдачи работы.

Перед сдачей работы рекомендуется ознакомиться со списком вопросов изучаемой темы и попытаться самостоятельно на них ответить, используя конспект лекций и рекомендуемую литературу. Таким образом, вы сможете сэкономить свое время и время преподавателя.

Кроме чтения учебной литературы из обязательного списка рекомендуется активно использовать информационные ресурсы сети Интернет по изучаемой теме. Ответы на многие вопросы, связанные с основами нейрокомпьютеров, моделированием нейронных сетей и их реализации на программируемых логических интегральных схемах, можно получить в сети Интернет на соответствующих информационных ресурсах.

Самостоятельное изучение тем учебной дисциплины способствует:

- закреплению знаний, умений и навыков, полученных в ходе аудиторных занятий;
- углублению и расширению знаний по отдельным вопросам и темам дисциплины;

– освоению умений прикладного и практического использования полученных знаний в области моделирования и проектирования нейросетевых систем на базе ПЛИС.

Самостоятельная работа как вид учебной работы может использоваться на лекциях и практических занятиях, а также иметь самостоятельное значение — внеаудиторная самостоятельная работа обучающихся — при подготовке к лекциям, практическим занятиям, а также к экзамену.

Основными видами самостоятельной работы по дисциплине являются:

- самостоятельное изучение отдельных вопросов и тем дисциплины;
- выполнение домашнего задания: изучение теоретического материала перед проведением практических занятий;
 - подготовка к защите практического задания, оформление отчета.

Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 1. Тарков, М. С. Нейрокомпьютерные системы : учебное пособие / М. С. Тарков. 3-е изд. Москва : Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020. 170 с.
- 2. Сергеев, А. П. Введение в нейросетевое моделирование : учебное пособие / А. П. Сергеев, Д. А. Тарасов ; под редакцией А. П. Сергеева. Екатеринбург : Издательство Уральского университета, 2017. 128 с.
- 3. Бибило, П. Н. Синтез логических схем с использованием языка VHDL / П. Н. Бибило. Москва : СОЛОН-Р, 2021. 384 с.
- 4. Бибило, П. Н. Основы языка VHDL / П. Н. Бибило. Москва : СОЛОН-Р, 2021. 200 с.
- 5. Филиппов, Ф. В. Нейросетевые технологии : учебное пособие / Ф. В. Филиппов. Санкт-Петербург : СПбГУТ им. М.А. Бонч-Бруевича, 2020. 129 с.
- 6. Перельройзен, Е. З. Проектируем на VHDL / Е. З. Перельройзен. Москва : СОЛОН-Пресс, 2021. 448 с.
- 7. Поляков, А. К. Языки VHDL и VERILOG в проектировании цифровой аппаратуры / А. К. Поляков. Москва : СОЛОН-Пресс, 2021. 314 с.
- 8. Ростовцев, В. С. Искусственные нейронные сети: учебник для вузов / В. С. Ростовцев. 5-е изд., стер. Санкт-Петербург: Лань, 2025. 216 с.
- 9. Основы языка VHDL. Часть 1 [Электронный ресурс]: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: А.Н. Сапрыкин, А.М. Гостин. Рязань, 2015. 16 с.
- 10. Основы языка VHDL. Часть 2 [Электронный ресурс]: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: А.Н. Сапрыкин, А.М. Гостин. Рязань, 2016. 16 с.
- 11. Основы языка VHDL. Часть 3 [Электронный ресурс]: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: А.Н. Сапрыкин, А.М. Гостин. Рязань, 2017. 16 с.
- 12. Основы языка VHDL. Часть 4 [Электронный ресурс]: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: А.Н. Сапрыкин, А.М. Гостин. Рязань, 2018. 16 с.
- 13. Основы языка VHDL. Часть 5 [Электронный ресурс]: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: А.Н. Сапрыкин. Рязань, 2022. 16 с.
- 14. Основы языка VHDL. Часть 6 [Электронный ресурс]: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: А.Н. Сапрыкин. Рязань, 2023. 16 с.
- 15. Основы языка VHDL. Часть 7 [Электронный ресурс]: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: А.Н. Сапрыкин. Рязань, 2023. 24 с.

- 16. Синтез VHDL-кода в среде Quartus II. Часть 1 [Электронный ресурс]: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: А.Н. Сапрыкин, М.С. Игошина. Рязань, 2022. 16 с.
- 17. Синтез VHDL-кода в среде Quartus II. Часть 2 [Электронный ресурс]: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: А.Н. Сапрыкин, М.С. Кошелева. Рязань, 2023. 16 с.