
ПРИЛОЖЕНИЕ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное

учреждение высшего образования

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ

Кафедра «Автоматика и информационные технологии в управлении»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Анализ данных»

Направление подготовки

01.03.02 Прикладная математика и информатика

ОПОП

«Программирование и анализ данных»

Квалификация (степень) выпускника – бакалавр

Формы обучения – очная

Рязань 2025 г.

1. Компетенции, формируемые в процессе изучения дисциплины

Код и наименование компетенции Индикаторы достижения компетенции

ОПК-1 Способен применять

фундаментальные знания, полученные в

области математических и (или)

естественных наук, и использовать их в

профессиональной деятельности

ОПК-1.1 Использует фундаментальные знания,

полученные в области математических наук при решении

научных и технических задач в своей профессиональной

деятельности

ОПК-1.2 Использует фундаментальные знания,

полученные в области естественных наук при решении

научных и технических задач в своей профессиональной

деятельности

ОПК-4 Способен понимать принципы

работы современных информационных

технологий и использовать их для решения

задач профессиональной деятельности

ОПК-4.1 Понимает принципы работы современных

информационных технологий

ОПК-4.2 Использует современные информационные

технологии для решения задач профессиональной

деятельности

2. Показатели оценивания компетенций

В результате изучения дисциплины «Анализ данных» обучающийся должен:

знать:

□ Постановки задач интеллектуального анализа данных;

□ популярные алгоритмы интеллектуального анализа данных;

□ современный технический уровень в развитии алгоритмов интеллектуального анализа

данных.

уметь:

□ Находить в описании задач из бизнеса задачи для интеллектуального анализа данных;

□ осуществлять математическую постановку задач интеллектуального анализа данных.

владеть:

□ Современными алгоритмами интеллектуального анализа данных;

□ современным инструментарием для промышленного решения задач интеллектуального

анализа данных.

3. Перечень типовых (примерных) вопросов, заданий, тем для подготовки к текущему контролю

Примеры заданий преведены в конце программы в виде отдельного файла

4. Перечень типовых (примерных) вопросов и тем для проведения промежуточной аттестации

обучающихся

1. Назовите основные задачи анализа данных.

2. Что необходимо для построения предсказательной модели?

3. Назовите основные библиотеки на Питон для работы с данными.

4. Какие есть способы первичной визуализации данных?

5. В чем заключается трудность обработки данных с пропусками?

6. Какие основные правила сбора и обработки данных?

7. Где на практике используются основные вероятностные распределения?

8. В чем практическое применение предельных теорем теории вероятностей?

Билет 1:

1. Назовите основные библиотеки на Питон для работы с данными.

2. Какие есть способы первичной визуализации данных?

Билет 2:

1. Какие основные правила сбора и обработки данных?

2. Где на практике используются основные вероятностные распределения?

Критерии оценивания

- оценка «отлично (10)» выставляется студенту, показавшему всесторонние,

систематизированные, глубокие знания учебной программы дисциплины и умение уверенно

применять их на практике при решении конкретных задач, свободное и правильное обоснование

принятых решений

- оценка «отлично (9)» выставляется студенту, показавшему всесторонние,

систематизированные, глубокие знания учебной программы дисциплины и умение применять их

на практике при решении конкретных задач, свободное и правильное обоснование принятых

решений

- оценка «отлично (8)» выставляется студенту, показавшему всесторонние

систематизированные, глубокие знания учебной программы дисциплины и умение применять их

на практике при решении конкретных задач, и правильное обоснование принятых решений

- оценка «хорошо (7)» выставляется студенту, если он твердо знает материал, грамотно и по

существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или

в решении задач некоторые неточности;

- оценка «хорошо (6)» выставляется студенту, если он знает материал, грамотно и по существу

излагает его, умеет применять полученные знания на практике, но допускает в ответе или в

решении задач некоторые неточности;

- оценка «хорошо (5)» выставляется студенту, если он знает материал, и по существу излагает его,

умеет применять полученные знания на практике, но допускает в ответе или в решении задач

некоторые неточности;

- оценка «удовлетворительно (4)» выставляется студенту, показавшему фрагментарный,

разрозненный характер знаний, недостаточно правильные формулировки базовых понятий,

нарушения логической последовательности в изложении программного материала, но при этом он

владеет основными разделами учебной программы, необходимыми для дальнейшего обучения

и может применять полученные знания по образцу в стандартной ситуации;

- оценка «удовлетворительно (3)» выставляется студенту, показавшему фрагментарный,

разрозненный характер знаний, недостаточно правильные формулировки базовых понятий,

нарушения логической последовательности в изложении программного материала, но при этом он

владеет фрагментарно основными разделами учебной программы, необходимыми для дальнейшего

обучения и может применять полученные знания по образцу в стандартной ситуации;

- оценка «неудовлетворительно (2)» выставляется студенту, который не знает большей части

основного содержания учебной программы дисциплины, допускает грубые ошибки в

формулировках основных понятий дисциплины и не умеет использовать полученные знания при

решении типовых практических задач

- оценка «неудовлетворительно (1)» выставляется студенту, который не знает формулировок

основных понятий дисциплины.

5. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и

(или) опыта деятельности

При проведении экзамена, обучающемуся предоставляется 60 минут на подготовку. Опрос

обучающегося не должен превышать двух астрономических часов.

Во время проведения экзамена, обучающиеся могут пользоваться программой дисциплины, а

также справочной литературой и другими материалами.

Введение в анализ данных

Домашнее задание 1. Numpy , matplotlib , scipy.stats

Правила:

 Дедлайн 25 марта 23:59. После дедлайна работы не принимаются кроме случаев наличия

уважительной причины.

 Выполненную работу нужно отправить на почту mipt.stats@yandex.ru , указав тему письма "

[номер группы] Фамилия Имя - Задание 1" . Квадратные скобки обязательны.

 Прислать нужно ноутбук и его pdf-версию (без архивов). Названия файлов должны быть такими:

1.N.ipynb и 1.N.pdf , где N -- ваш номер из таблицы с оценками. pdf-версию можно сделать с

помощью Ctrl+P. Пожалуйста, посмотрите ее полностью перед отправкой. Если что-то

существенное не напечатается в pdf, то баллы могут быть снижены.

 Решения, размещенные на каких-либо интернет-ресурсах, не принимаются. Кроме того, публикация

решения в открытом доступе может быть приравнена к предоставлении возможности списать.

 Для выполнения задания используйте этот ноутбук в качестве основы, ничего не удаляя из него.

 Пропущенные описания принимаемых аргументов дописать на русском.

 Если код будет не понятен проверяющему, оценка может быть снижена.

Баллы за задание:

Легкая часть (достаточно на "хор"):

 Задача 1.1 -- 3 балла

 Задача 1.2 -- 3 балла

 Задача 2 -- 3 балла

Сложная часть (необходимо на "отл"):

 Задача 1.3 -- 3 балла

 Задача 3.1 -- 3 балла

 Задача 3.2 -- 3 балла

 Задача 3.3 -- 3 балла

 Задача 4 -- 4 балла

Баллы за разные части суммируются отдельно, нормируются впоследствии также отдельно. Иначе

говоря, 1 балл за легкую часть может быть не равен 1 баллу за сложную часть.

In []:

1 import numpy as np

2 import scipy.stats as sps
3

4 import matplotlib.pyplot as plt
5 import matplotlib.cm as cm
6 from mpl_toolkits.mplot3d import Axes3D
7 import ipywidgets as widgets
8

9 import typing
10

11 %matplotlib inline

mailto:mipt.stats@yandex.ru

Легкая часть: генерация

В этой части другие библиотеки использовать запрещено. Шаблоны кода ниже менять нельзя.

Задача 1

Имеется симметричная монета. Напишите функцию генерации независимых случайных величин из

нормального и экспоненциального распределений с заданными параметрами.

In []:

1 ▾ # Эта ячейка -- единственная в задаче 1, в которой нужно использовать

2 # библиотечную функция для генерации случайных чисел.

3 # В других ячейках данной задачи используйте функцию coin.

4

5 # симметричная монета

6 coin = sps.<ваш код>

Проверьте работоспособность функции, сгенерировав 10 бросков симметричной монеты.

In []:

Часть 1. Напишите сначала функцию генерации случайных величин из равномерного распределения на

отрезке [0, 1] с заданной точностью. Это можно сделать, записав случайную величину 𝜉 ∼ 𝑈[0, 1] в

двоичной системе системе счисления 𝜉 = 0, 𝜉1 𝜉2 𝜉3 Тогда 𝜉𝑖 ∼ 𝐵𝑒𝑟𝑛(1/2) и независимы в совокупности.

Приближение заключается в том, что вместо генерации бесконечного количества 𝜉𝑖 мы полагаем 𝜉 = 0, 𝜉1 𝜉2 𝜉3 .

. . 𝜉𝑛 .

Нужно реализовать функцию нужно так, чтобы она могла принимать на вход в качестве параметра

size как число, так и объект tuple любой размерности, и возвращать объект numpy.array

соответствующей размерности. Например, если size=(10, 1, 5) , то функция должна вернуть

объект размера 10 × 1 × 5. Кроме того, функцию coin можно вызвать только один раз, и, конечно же,

не использовать какие-либо циклы. Аргумент precision отвечает за число 𝑛.

In []:

Для 𝑈[0, 1] сгенерируйте 200 независимых случайных величин, постройте график плотности на отрезке

[−0.25, 1.25], а также гистограмму по сгенерированным случайным величинам.

 1

return # В одну строчку не выходя за границы? ;)

2

In []:

1 size = 200

2 ▾ grid = <функция из numpy для создания равномерной сетки
3 от -0.25 до 1.25 на 500 точек>
4 sample = <Сгенерируйте size случайных величин точности 50>
5

6 # Отрисовка графика

7 plt.<определите график размера 10 на 4>
8

9 # отображаем значения случайных величин полупрозрачными точками

10 ▾ plt.<функция отрисовки точек>(
11 sample,
12 np.zeros(size),
13 <прозрачность точки равна 0.4>,
14 <подпись точек в легенде к графику>
15)
16

17 # по точкам строим нормированную полупрозрачную гистограмму

18 ▾ plt.<функция отрисовки гистограммы>(
19 sample,
20 <10 столбиков>,
21 <нормировка столбиков>,
22 <прозрачность столбиков равна 0.4>,
23 <оранжевый цвет столбиков>
24)
25

26 # рисуем график плотности

27 ▾ plt.<функция отрисовки линии>(
28 grid,
29 <Посчитайте плотность в точках grid, используя sps.uniform.pdf>,
30 <красный цвет линии>,
31 <толщина линии равна 3>,
32 <подпись линии в легенде к графику>
33)
34 plt.<легенда>
35 plt.<сетка>(ls=':')

36 plt.show()

Исследуйте, как меняются значения случайных величин в зависимости от precision .

In []:

1 size = 100

2

3 plt.<определите график размера 15 на 3>
4

5 ▾ for i, precision in enumerate([1, 2, 3, 5, 10, 30]):
6 plt.<определите подграфик>(3, 2, i + 1)
7 ▾ plt.<функция отрисовки точек>(
8 <Сгенерируйте выборку размера size точности precision>,
9 np.zeros(size),

10 <прозрачность точки равна 0.4>
11)
12 plt.yticks([])
13 if i < 4: plt.xticks([])
14

15 plt.show()

Вывод:

<...>

Часть 2. Напишите функцию генерации случайных величин в количестве size штук (как и раньше, тут

может быть tuple) из распределения (𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒2) с помощью преобразования Бокса-Мюллера, которое

заключается в следующем. Пусть 𝜉 и 𝜂 -- независимые случайные величины, равномерно
распределенные на (0, 1]. Тогда случайные величины 𝑋 = 𝑐𝑜𝑠(2𝜋𝜉)√−

⎯ ⎯ ⎯⎯ √
⎯− ⎯ ⎯ ⎯⎯

являются независимыми нормальными (0, 1).

2 ln 𝜂, 𝑌 = 𝑠𝑖𝑛(2𝜋𝜉) 2 ln 𝜂

Реализация должна быть без циклов. Желательно использовать как можно меньше бросков монеты.

In []:

Для (0, 1) сгенерируйте 200 независимых случайных величин, постройте график плотности на отрезке

[−3, 3], а также гистограмму по сгенерированным случайным величинам.

In []:

Сложная часть: генерация

Часть 3. Вы уже научились генерировать выборку из равномерного распределения. Напишите функцию

генерации выборки из экспоненциального распределения, используя из теории вероятностей:

Если 𝜉 --- случайная величина, имеющая абсолютно непрерывное распределение, и 𝐹 --- ее функция

распределения, то случайная величина 𝐹 (𝜉) имеет равномерное распределение на [0, 1].

Какое преобразование над равномерной случайной величиной необходимо совершить?

<...>

Для получения полного балла реализация должна быть без циклов, а параметр size может быть типа

tuple .

In []:

Для 𝐸𝑥𝑝(1) сгенерируйте выборку размера 100 и постройте график плотности этого распределения на отрезке

[−0.5, 5].

In []:

Вывод по задаче:

2

 1

return

2

 1

<...>

Легкая часть: матричное умножение

Задача 2

Напишите функцию, реализующую матричное умножение. При вычислении разрешается создавать

объекты размерности три. Запрещается пользоваться функциями, реализующими матричное умножение

(numpy.dot , операция @ , операция умножения в классе numpy.matrix). Разрешено пользоваться

только простыми векторно-арифметическими операциями над numpy.array , а также

преобразованиями осей. Авторское решение занимает одну строчку.

In []:

Проверьте правильность реализации на случайных матрицах. Должен получится ноль.

In []:

1 A = sps.uniform.rvs(size=(10, 20))

2 B = sps.uniform.rvs(size=(20, 30))

3 np.abs(matrix_multiplication(A, B) - A @ B).sum()

На основе опыта: вот в таком стиле многие из вас присылали бы нам свои работы, если не стали бы

делать это задание :)

In []:

Проверьте, насколько быстрее работает ваш код по сравнению с неэффективной реализацией

stupid_matrix_multiplication . Эффективный код должен работать почти в 200 раз быстрее. Для

примера посмотрите также, насколько быстрее работают встроенные numpy -функции.

In []:

1 A = sps.uniform.rvs(size=(400, 200))

2 B = sps.uniform.rvs(size=(200, 300))
3

4 %time C1 = matrix_multiplication(A, B)
5 %time C2 = A @ B # python 3.5

6 %time C3 = np.matrix(A) * np.matrix(B)
7 %time C4 = stupid_matrix_multiplication(A, B)

8 %time C5 = np.einsum('ij,jk->ik', A, B)

return

2

return C

2

6

7

Ниже для примера приведена полная реализация функции. Ваc мы, конечно, не будем требовать

проверять входные данные на корректность, но документации к функциям нужно писать.

In []:

1 ▾ def matrix_multiplication(A, B):
2 '''Возвращает матрицу, которая является результатом
3 матричного умножения матриц A и B.
4

5 '''
6

7 # Если A или B имеют другой тип, нужно выполнить преобразование типов

8 A = np.array(A)
9 B = np.array(B)

10

11 # Проверка данных входных данных на корректность

12 assert A.ndim == 2 and B.ndim == 2, 'Размер матриц не равен 2'
13 ▾ assert A.shape[1] == B.shape[0], \
14 ('Матрицы размерностей {} и {} неперемножаемы'.format(A.shape, B.shap
15

16 C = <...>
17

18 return C

Сложная часть: броуновское движение

Задача 3

Познавательная часть задачи (не пригодится для решения задачи)

Абсолютное значение скорости движения частиц идеального газа, находящегося в состоянии ТД-

равновесия, есть случайная величина, имеющая распределение Максвелла и зависящая только от

одного термодинамического параметра — температуры 𝑇 .

В общем случае плотность вероятности распределения Максвелла для n-мерного пространства имеет

вид:

− 𝑚𝑣2

𝑝(𝑣) = C 𝑒 2𝑘𝑇 𝑣𝑛−1 ,

+∞

где 𝑣 ∈ [0, +∞), а константа C находится из условия нормировки ∫ 𝑝(𝑣)d𝑣 = 1.

0

Физический смысл этой функции таков: вероятность того, что скорость частицы входит в промежуток [𝑣0,

𝑣0 + d𝑣], приближённо равна 𝑝(𝑣0)d𝑣 при достаточно малом d𝑣. Тут надо оговориться, что математически

корректное утверждение таково:

𝖯{𝑣 | 𝑣 ∈ [𝑣0 ,𝑣0 +d𝑣]}
lim

d𝑣→0 d𝑣 = 𝑝(𝑣0).

Поскольку это распределение не ограничено справа, определённая доля частиц среды приобратает

настолько высокие скорости, что при столкновении с макрообъектом может происходить заметное

отклонение как траектории, так и скорости его движения.

Мы предполагаем идеальность газа, поэтому компоненты вектора скорости частиц среды 𝑣𝑖 можно

считать независимыми нормально распределёнными случайными величинами, т.е.

𝑣𝑖 ∼ (0, 𝑠2),

где 𝑠 зависит от температуры и массы частиц и одинаково для всех направлений движения.

При столкновении макрообъекта с частицами среды происходит перераспределение импульса в

соответствии с законами сохранения энергии и импульса, но в силу большого числа подобных событий

за единицу времени, моделировать их напрямую достаточно затруднительно. Поэтому для выполнения

этого ноутбука сделаем следующие предположения:

 Приращение компоненты координаты броуновской частицы за фиксированный промежуток времени

(или за шаг) Δ𝑡 имеет вид Δ𝑥𝑖 ∼ (0, 𝜎2).

 𝜎 является конкретным числом, зависящим как от Δ𝑡, так и от параметров броуновской частицы и

среды.

 При этом 𝜎 не зависит ни от координат, ни от текущего вектора скорости броуновкой частицы.

Если говорить формальным языком, в этом ноутбуке мы будем моделировать Винеровский случайный

процесс

(https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D0%BD%D0%B5%D1%80%D0%BE%D0%B2%D1%81%D0%

с фиксированным шагом.

Задание

1. Разработать функцию симуляции броуновского движения

Функция должна вычислять приращение координаты частицы на каждом шаге как

Δ𝑥𝑖𝑗𝑘 ∼ (0, 𝜎2) ∀𝑖, 𝑗, 𝑘, где 𝑖 — номер частицы, 𝑗 — номер координаты, а 𝑘 — номер шага. Функция

принимает в качестве аргументов:

 Параметр 𝜎;

 Количество последовательных изменений координат (шагов), приходящихся на один процесс;

 Число процессов для генерации (количество различных частиц);

 Количество пространственных измерений для генерации процесса.

Возвращаемое значение:

 3-х мерный массив result , где result[i,j,k] — значение 𝑗-й координаты 𝑖-й частицы на 𝑘-м

шаге.

Общее требование

 Считать, что все частицы в начальный момент времени находятся в начале координат.

Что нужно сделать

 Реализовать функцию для произвольной размерности, не используя циклы.

 Дописать проверки типов для остальных аргументов.

Обратите внимание на использование аннотаций для типов аргументов и возвращаемого значения

функции. В новых версиях Питона подобные возможности синтаксиса используются в качестве подсказок

для программистов и статических анализаторов кода, и никакой дополнительной функциональности не

добавляют.

https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D0%BD%D0%B5%D1%80%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81
https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D0%BD%D0%B5%D1%80%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81
https://ru.wikipedia.org/wiki/%D0%92%D0%B8%D0%BD%D0%B5%D1%80%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D0%BF%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81

Например, typing.Union[int, float] означает "или int, или float" .

Что может оказаться полезным

 Генерация нормальной выборки: scipy.stats.norm . Ссылка

 (https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html)

Кумулятивная сумма: метод cumsum у np.ndarray . Ссылка

 (https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.cumsum.html)

In []:

1 ▾ def generate_brownian(sigma: typing.Union[int, float] = 1,

2 *,
3 n_proc: int = 10,
4 n_dims: int = 2,
5 n_steps: int = 100) -> np.ndarray:
6 """
7 ▾ :param sigma: стандартное отклонение нормального распределения,
8 генерирующего пошаговые смещения координат
9 :param n_proc: <ДОПИСАТЬ>

10 :param n_dims: <ДОПИСАТЬ>
11 :param n_steps: <ДОПИСАТЬ>
12

13 ▾ :return: np.ndarray размера (n_proc, n_dims, n_steps), содержащий
14 на позиции [i,j,k] значение j-й координаты i-й частицы
15 на k-м шаге.
16 """
17 ▾ if not np.issubdtype(type(sigma), np.number):
18 raise TypeError("Параметр 'sigma' должен быть числом")
19 # <ДОПИСАТЬ ПРОВЕРКИ ТИПОВ>

20

21 return <...>

Символ * в заголовке означает, что все аргументы, объявленные после него, необходимо определять

только по имени.

Например,

generate_brownian(323, 3) # Ошибка

generate_brownian(323, n_steps=3) # OK

При проверке типов остальных аргументов, по аналогии с np.number , можно использовать

np.integer . Конструкция np.issubdtype(type(param), np.number) используется по причине

того, что стандартная питоновская проверка isinstance(sigma, (int, float)) не будет работать

для numpy -чисел int64, int32, float64 и т.д.

In []:

1 brownian_2d = generate_brownian(2, n_steps=12000, n_proc=500, n_dims=2)

2 assert brownian_2d.shape == (500, 2, 12000)

2. Визуализируйте траектории для 9-ти первых броуновских частиц

Что нужно сделать

 Нарисовать 2D-графики для brownian_2d .

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.cumsum.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.cumsum.html

 Нарисовать 3D-графики для brownian_3d = generate_brownian(2, n_steps=12000,

n_proc=500, n_dims=3) .

Общие требования

 Установить соотношение масштабов осей, равное 1, для каждого из подграфиков.

Что может оказаться полезным

 Туториал (https://matplotlib.org/devdocs/gallery/subplots_axes_and_figures/subplots_demo.html) по

построению нескольких графиков на одной странице.

 Метод plot у AxesSubplot (переменная ax в цикле ниже).

 Метод set_aspect у AxesSubplot .

In []:

1 fig, axes = plt.subplots(3, 3, figsize=(18, 10))

2 fig.suptitle('Траектории броуновского движения', fontsize=20)
3

4 ▾ for ax, (xs, ys) in zip(axes.flat, brownian_2d):
5 <...>

6 pass

3. Постройте график среднего расстояния частицы от начала координат в зависимости от
времени (шага)

 Постройте для n_dims от 1 до 5 включительно.

 Кривые должны быть отрисованы на одном графике. Каждая кривая должна иметь легенду.

 Для графиков подписи к осям обязательны.

Вопросы

 Как вы думаете, какой функцией может описываться данная зависимость?

 Сильно ли её вид зависит от размерности пространства?

 Можно ли её линеаризовать? Если да, нарисуйте график с такими же требованиями.

In []:

1 plt.figure(figsize=(12, 6))

2

3 ▾ for n_dims in range(1, 6):
4 ▾ plt.plot(
5 <...>
6 label=f'Размерность: {n_dims}'
7)
8

9 plt.ylabel('Ср. раст. частицы от нач. координат')
10 plt.xlabel('Шаг')
11 plt.legend(loc='best')
12 plt.tight_layout()

13 plt.show()

Сложная часть: визуализация распределений

https://matplotlib.org/devdocs/gallery/subplots_axes_and_figures/subplots_demo.html

Задача 4

В этой задаче вам нужно исследовать свойства дискретных распределений и абсолютно непрерывных

распределений.

Для перечисленных ниже распределений нужно

1) На основе графиков дискретной плотности (функции массы) для различных параметров пояснить, за

что отвечает каждый параметр.

2) Сгенерировать набор независимых случайных величин из этого распределения и построить по ним

гистограмму.

3) Сделать выводы о свойтсвах каждого из распределений.

Распределения:

 Бернулли

 Биномиальное

 Равномерное

 Геометрическое

Для выполнения данного задания можно использовать код с лекции.

In []:

 1

ДСФ1

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО ФГБОУ ВО "РГРТУ", РГРТУ, Бабаян Павел Вартанович,
Заведующий кафедрой АИТУ

04.12.25 11:07 (MSK) Простая подпись

Оператор ЭДО ООО "Компания "Тензор"

