ПРИЛОЖЕНИЕ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ИМЕНИ. В.Ф. УТКИНА

Кафедра «Вычислительная и прикладная математика»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ «Математическая логика и теория алгоритмов»

Специальность 09.05.01 «Применение и эксплуатация систем специального назначения»

Специализация «Математическое_ программное и информационное обеспечение вычислительной техники и автоматизированных систем»

Уровень подготовки Специалитет

Квалификация выпускника – инженер

Форма обучения - очная

Рязань

1 ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы – это совокупность учебно-методических материалов и процедур, предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача – обеспечить оценку уровня сформированности компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме промежуточной аттестации – экзамена – в 3-м семестре.

2 ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Уровень освоения компетенций, формируемых дисциплиной

а) описание критериев и шкалы оценивания тестирования:

Шкала оценивания	Критерий
3 балла	уровень усвоения материала, предусмотренного программой:
(эталонный уровень)	процент верных ответов на тестовые вопросы от 85 до 100%
2 балла	уровень усвоения материала, предусмотренного программой:
(продвинутый уровень)	процент верных ответов на тестовые вопросы от 75 до 84%
1 балл	уровень усвоения материала, предусмотренного программой:
(пороговый уровень)	процент верных ответов на тестовые вопросы от 60 до 74%
0 баллов	уровень усвоения материала, предусмотренного программой:
	процент верных ответов на тестовые вопросы от 0 до 59%

б) описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий
3 балла	выставляется студенту, который дал полный ответ на вопрос,
(эталонный уровень)	показал глубокие систематизированные знания, смог
	привести примеры, ответил на дополнительные вопросы
	преподавателя.
2 балла	выставляется студенту, который дал полный ответ на вопрос,
(продвинутый уровень)	но на некоторые дополнительные вопросы преподавателя
	ответил только с помощью наводящих вопросов.
1 балл	выставляется студенту, который дал неполный ответ на
(пороговый уровень)	вопрос в билете и смог ответить на дополнительные вопросы
	только с помощью преподавателя.
0 баллов	выставляется студенту, который не смог ответить на вопрос

в) описание критериев и шкалы оценивания практического задания:

Шкала оценивания	Критерий
3 балла	Задание решено верно
(эталонный уровень)	
2 балла	Задание решено верно, но имеются технические неточности в
(продвинутый уровень)	выполнении
1 балл	Задание решено верно, с дополнительными наводящими

(пороговый уровень)	вопросами преподавателя
0 баллов	Задание не решено

На экзамен выносится: тестовое задание, 1 практическое задание и 1 теоретический вопрос. Студент может набрать максимум 9 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Шкала оценивания		Критерий
отлично	8 – 9 баллов	Обязательным условием является
(эталонный уровень)		выполнение всех предусмотренных в
хорошо	6 – 7 баллов	течение семестра практических заданий и
(продвинутый уровень)		лабораторных работ.
удовлетворительно	4 – 5 баллов	
(пороговый уровень)		
неудовлетворительно	0 – 3 баллов	Студент не выполнил всех
		предусмотренных в течение семестра
		текущих заданий

3 ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Наименование оценочного средства
3 семестр (осенний)		
Раздел 1. Математическая логика		
Логика высказываний	ОПК-1.1 ОПК-1.2	Зачет
Исчисление высказываний	ОПК-1.1 ОПК-1.2	Зачет
4 семестр (весенний)		
Логика предикатов	ОПК-1.1 ОПК-1.2	Экзамен
Исчисление предикатов	ОПК-1.1 ОПК-1.2	Экзамен
Раздел 2. Теория алгоритмов		
Основные понятия теории алгоритмов	ОПК-1.1 ОПК-1.2	Экзамен
Машины Тьюринга	ОПК-1.1 ОПК-1.2	Экзамен
Нормальные алгоритмы Маркова	ОПК-1.1 ОПК-1.2	Экзамен
Частично-рекурсивные функции.	ОПК-1.1 ОПК-1.2	Экзамен
Неклассические логики	ОПК-1.1 ОПК-1.2	Экзамен

4 ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1 Промежуточная аттестация (экзамен)

ОПК-1: Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;

ОПК-1.1. Демонстрирует естественнонаучные и общеинженерные знания, знания методов математического анализа и моделирования, теоретического и экспериментального исследования

а) типовые тестовые вопросы закрытого типа

- 1. Укажите истинные высказывания:
 - 1. Новгород стоит на Волхове.
 - 2. Париж столица Англии.
 - 3. Карась не рыба.
 - 4. Число 6 делится на 2 и на 3.
 - 5. Если юноша окончил среднюю школу, то он получает аттестат зрелости.

Выберите один ответ:

- 1, 3, 5
- 1, 2, 5
- 2, 4, 5
- <u>1, 4, 5</u>
- 1, 3, 4
- 2. Какие операции можно выполнять над высказываниями?
 - 1) дизъюнкция (соответствует союзу «или»);
 - 2) конъюнкция (соответствует союзу «и»);
 - 3) импликация (соответствует фразе типа «если ..., то»);
 - 4) эквиваленция (соответствует фразе типа «... тогда и только тогда, когда» ...);
 - 5) отрицание (соответствует союзу «не»).

Выберите один ответ:

Все перечисленные

- 1, 2, 4, 5
- 1, 2, 3, 4
- 1, 3, 4, 5
- 2, 4, 5
- 3. Для упрощения записи формул принят ряд соглашений. Скобки можно опускать, придерживаясь определенного порядка действий:
 - 1) конъюнкция;
 - 2) отрицание;
 - 3) импликация;
 - 4) дизъюнкция;
 - 5) эквивалентность;

Выберите один ответ:

- 1, 4, 2, 3, 5
- 1, 2, 3, 4, 5
- 2, 1, 4, 3, 5
- 3, 4, 5, 2, 1
- 2, 1, 3, 5, 4
- 4. Формула A называется тавтологией:

Выберите один ответ:

<u>если она принимает значения 1 при всех значениях входящих в нее переменных</u>

если она принимает значение 0 при всех значениях входящих в нее переменных

5. Функцией алгебры логики п переменных (или функцией Буля) называется функция п

переменных, где каждая переменная принимает два значения:

Выберите один ответ:

0 и 1

<u>0 и 1, и при этом функция может принимать только одно из двух</u> значений: <u>0 или 1</u>

0 и 1, и при этом функция может принимать любое значение

- 6. Какие свойства присущи СДНФ:
 - 1) Все логические слагаемые формулы различны.
 - 2) Каждое логическое слагаемое формулы содержит все переменные, входящие в функцию.
 - 3) Ни одно логическое слагаемое формулы не содержит одновременно переменную и ее отрицание.
 - 4) Ни одно логическое слагаемое формулы не содержит одну и ту же переменную дважды.

Выберите один ответ:

2, 3, 4

1, 2, 3, 4

1, 2, 3

1, 3, 4

7. Назовите способы получения СДНФ А:

Выберите один ответ:

<u>с помощью равносильных преобразований формулы и с помощью</u> таблицы истинности

с помощью равносильных преобразований формулы

с помощью таблицы истинности

8. Какие условия должны быть выполнены для того, чтобы КНФ А называлась совершенной конъюнктивной нормальной формой формулы А (СКНФ А)?

Выберите один ответ:

Все элементарные дизъюнкции, входящие в КНФ А, различны.

Каждая элементарная дизъюнкция, входящая в КН Φ A, не содержит двух одинаковых переменных.

Все элементарные дизъюнкции, входящие в КНФ А, содержат все переменные.

Каждая элементарная дизъюнкция, входящая в КНФ А, не содержит переменную и ее отрицание.

Все перечисленные

9. Каким способом можно получить СКНФ?

Выберите один ответ:

с помощью равносильных преобразований

с помощью таблицы истинности для формулы отрицания А

<u>с помощью равносильных преобразований и с помощью таблицы</u> <u>истинности для формулы отрицания А</u>

10. Все формулы алгебры логики делятся на:

Выберите один ответ:

тождественно истинные и выполнимые

тождественно ложные и выполнимые

тождественно истинные и тождественно ложные

тождественно истинные, тождественно ложные и выполнимые

11. На какие составляющие расчленяет логика предикатов элементарное высказывание? Выберите один ответ:

субъект (буквально - подлежащее, хотя оно и может играть роль дополнения) и предикат (буквально - сказуемое, хотя оно может играть и роль определения)

субъект (буквально - подлежащее, хотя оно и может играть роль дополнения) предикат (буквально - сказуемое, хотя оно может играть и роль определения)

12. Конъюнкцией двух предикатов P(x) и Q(x) называется новый предикат P(x)&Q(x), который принимает значение...

Выберите один ответ:

«ложь» при тех и только тех значениях х, при которых каждый из предикатов принимает значение «ложь», и принимает значение «истина» во всех остальных случаях

«истина» при тех и только тех значениях х, при которых каждый из предикатов принимает значение «истина», и принимает значение «ложь» во всех остальных случаях

«ложь» при тех и только тех значениях х, при которых каждый из предикатов принимает значение «истина», и принимает значение «ложь» во всех остальных случаях

б) типовые тестовые вопросы открытого типа

1. Верно ли, что под высказыванием понимают всякое повествовательное предложение, утверждающее что-либо о чем-либо, и при этом всегда можно сказать, истинно оно или ложно в данных условиях места и времени.

Верно

2. Верно ли, что отрицанием высказывания x называется новое высказывание, которое является истинным, если высказывание x ложно, и ложным, если высказывание x истинно.

<u>Верно</u>

3. Верно ли, что конъюнкцией двух высказываний x, y называется новое высказывание, которое считается истинным, если оба высказывания x, y истинны, и ложным, если хотя бы одно из них ложно

<u>Верно</u>

4. Верно ли, что дизъюнкцией двух высказываний *х, у* называется новое высказывание, которое считается истинным, если хотя бы одно из высказываний *х, у* истинно, и ложным, если они оба ложны

<u>Верно</u>

5. Верно ли, что импликацией двух высказываний x, y называется новое высказывание, которое считается ложным, если x истинно, а y - ложно, и истинным во всех остальных случаях

<u>Верно</u>

6. Верно ли, что эквиваленцией (или эквивалентностью) двух высказываний *х, у* называется новое высказывание, которое считается истинным, когда оба высказывания *х, у* либо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях

<u>Верно</u>

7. Верно ли, что всякое сложное высказывание, которое может быть получено из элементарных высказываний посредством применения логических операций отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции, называется формулой алгебры логики

<u>Верно</u>

8. Верно ли, что две формулы алгебры логики A и B называются равносильными, если они принимают одинаковые логические значения на любом наборе значений, входящих в формулы элементарных высказываний

Верно

9. Верно ли, что элементарной конъюнкцией n переменных называется конъюнкция переменных или их отрицаний

Верно

10. Верно ли, что дизъюнктивной нормальной формой (ДНФ) формулы А называется равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюнкций

Верно

11. Верно ли, что элементарной дизъюнкцией п переменных называется дизъюнкция переменных или их отрицаний

<u>Верно</u>

12. Верно ли, что конъюнктивной нормальной формой (КНФ) формулы А называется равносильная ей формула, представляющая собой конъюнкцию элементарных дизъюнкций

<u>Верно</u>

ОПК-1: Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;

ОПК-1.2. Применяет естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности

а) типовые тестовые вопросы закрытого типа

1. Дизъюнкцией двух предикатов P(x) и Q(x) называется новый предикат $P(x) \lor Q(x)$, который принимает значение ...

Выберите один ответ:

«ложь» при тех и только тех значениях, при которых каждый из предикатов принимает значение «истина» и принимает значение «ложь» во всех остальных случаях.

«истина» при тех и только тех значениях, при которых каждый из предикатов принимает значение «ложь» и принимает значение «истина» во всех остальных случаях.

«ложь» при тех и только тех значениях, при которых каждый из предикатов принимает значение «ложь» и принимает значение «истина» во всех остальных случаях.

2. Отрицанием предиката P(x) называется новый предикат $\overline{P(x)}$, который принимает значение ...

Выберите один ответ:

«истина» при всех значениях, при которых предикат принимает значение «истина», и принимает значение «ложь» при тех значениях, при которых предикат принимает значение «ложь».

«ложь» при всех значениях, при которых предикат принимает значение «ложь», и принимает значение «истина» при тех значениях, при которых предикат принимает значение «истина».

«истина» при всех значениях, при которых предикат принимает значение «ложь», и принимает значение «ложь» при тех значениях, при которых предикат принимает значение «истина».

3. Импликацией предикатов P(x) и Q(x) называется новый предикат $P(x) \to Q(x)$ который является ложным при тех и только тех значениях x, при которых ...

Выберите один ответ:

одновременно P(x) принимает значение «ложь», а Q(x) - значение «истина» и принимает значение «истина» во всех остальных случаях.

одновременно P(x) принимает значение «истина», а Q(x) - значение «истина» и принимает значение «истина» во всех остальных случаях.

одновременно P(x) принимает значение «истина», а Q(x) - значение «ложь» и принимает значение «истина» во всех остальных случаях.

4. Эквиваленцией предикатов P(x) и Q(x), называется новый предикат $P(x) \leftrightarrow Q(x)$ который принимает значение...

Выберите один ответ:

«истины» при тех и только тех значениях х, при которых значения каждого из предикатов ложны одновременно.

«истины» при тех и только тех значениях х, при которых значения каждого из предикатов либо истинны либо ложны одновременно.

«истины» при тех и только тех значениях х, при которых значения каждого из предикатов истинны одновременно.

5. Машина Тьюринга это:

Математическая машина

Воображаемая машина

Физическая машина

Математический объект

6. Внешний алфавит $A = \{a_0, a_1, ..., a_n\}$ машины Тьюринга θ это:

Конечное число знаков (символов, букв)

Все возможные существующие знаки, символы и буквы

7. Лента машины Тьюринга:

Ограничена с двух сторон

Неограничена справа

Неограничена слева

Неограничена в обе стороны, но в каждый момент времени на ней записано конечное число непустых букв

8. В каждый момент времени машина θ способна находиться в одном состоянии из конечного числа внутренних состояний, совокупность которых $Q=\{q_0,q_1,...,q_m\}$. Среди состояний выделяют два

Начальное q_1 и заключительное q_0 q_1 q_0

Начальное q_0 и заключительное q_1

Начальное q_0 и останова q_1

9. Работа машины θ определяется программой (функциональной схемой). Программа состоит из команд. Каждая команда T(i,j), $(i=\overline{1,m},j=\overline{1,n})$ представляет собой

 $q_i a_i \rightarrow q_k a_l C$

 $q_i a_i \rightarrow q_k a_l \Pi$

 $q_i a_i \rightarrow q_k a_l \Pi$

Выражение одного из перечисленных выше видов

10. Словом в алфавите A, или в алфавите Q, или в алфавите $A \cup Q$ называется

Любая последовательность букв

Любая последовательность букв любого алфавита

Любая последовательность букв соответствующего алфавита

11. Под k–й конфигурацией будем понимать:

Изображение ленты машины с информацией, сложившейся на ней к началу k-го шага, с указанием того, какая ячейка обозревается в этот шаг и в каком состоянии находится машина

Слово в алфавите A, записанное на ленту к началу k–го шага, с указанием того, какая ячейка обозревается в этот шаг и в каком состоянии находится машина Оба определения

12. Говорят, что (n+1)-местная функция φ получена из n-местной функции f и (n+2)-местной функции g с помощью оператора примитивной рекурсии, если для любых x_1, \dots, x_n справедливы равенства:

Справедливы все перечисленные выше равенства

13. Схемой примитивной рекурсии называется:

$$\varphi(x_1, ..., x_n, 0) = f(x_1, ..., x_n)$$

$$\varphi(x_1, ..., x_n, y + 1) = g(x_1, ..., x_n, y, \varphi(x_1, ..., x_n, y))$$

Оба равенства

14. Функция называется общерекурсивной если она

Всюду определена

Частично рекурсивна

Всюду определена и частично рекурсивна

б) типовые тестовые вопросы открытого типа

1. Верно ли, что одноместным предикатом P(x) называется произвольная функция переменного x, определенная на множестве M и принимающая значения из множества {1,0}?

<u>Верно</u>

2. Верно ли, что множество М, на котором определен предикат, называется множеством истинности предиката?

Верно

3. Верно ли, что двухместным предикатом P(x,y) называется функция двух переменных x, y определенная на множестве M=M1xM2 и принимающая значения из множества $\{1,0\}$?

Верно

4. Верно ли что, под выражением $\forall x P(x)$

понимают высказывание, истинное, когда P(x) истинно для каждого элемента x из множества M и ложное в противном случае, а символ называют квантором всеобщности?

<u>Верно</u>

5. Верно ли, что под выражением $\exists x P(x)$

понимают высказывание, которое является истинным, если существует элемент x, для которого P(x) истинно, и ложным в противном случае, а символ называется квантором существования?

<u>Верно</u>

6. Верно ли что, две формулы логики предикатов А и В называются равносильными на области М, если они принимают одинаковые логические значения при всех значениях входящих в них переменных, отнесенных к области М?

<u>Верно</u>

7. Верно ли что, две формулы логики предикатов А и В называются равносильными, если они равносильны на всякой области?

Верно

8. Верно ли что, формула логики предикатов имеет нормальную форму, если она содержит только операции конъюнкции, дизъюнкции и кванторные операции, а операция отрицания отнесена к элементарным формулам?

<u>Верно</u>

9. Верно ли, что в ПНФ кванторные операции либо полностью отсутствуют, либо они используются после всех операций алгебры логики?

<u>Верно</u>

10. Верно ли, что если функции $f(x_1,...,x_m)$, $g_1(x_1,...,x_n)$, ..., $g_m(x_1,...,x_n)$ правильно вычислимы по Тьюрингу, то правильно вычислима и сложная функция (суперпозиция функций):

$$\varphi(x_1,\ldots,x_n)=f(g_1(x_1,\ldots,x_n),\ldots,g_m(x_1,\ldots,x_n)$$

Верно

11. Верно ли, что функция называется примитивно рекурсивной, если она может быть получена из простейших функций O, S, I_m^n с помощью конечного числа применений операторов суперпозиции и примитивной рекурсии

Верно

12. Верно ли, что функция называется частично рекурсивной, если она может быть получена из простейших функций O, S, I_m^n с помощью конечного числа применений суперпозиции, примитивной рекурсии и μ -оператора

Верно

4.2 Типовые вопросы к зачету по дисциплине (3-й семестр) и к экзамену по дисциплине (4-й семестр)

Вопросы к зачету

- 1. Логика и исчисление высказываний
- 1.1 Понятие высказывания. Логические (пропозициональные) связки. Истинностные таблицы.
 - 1.2 Равносильные формулы. Основные равносильности.
 - 1.3 Дизъюнктивная и конъюнктивная нормальные формы.
 - 1.4 Двойственные формулы. Закон двойственности.
 - 1.5 Принцип двойственности.

Вопросы к экзамену

- 2. Логика и исчисление предикатов
- 2.1 Понятие предиката.
- 2.2 Предикаты тождественно-истинные, тождественно-ложные, выполнимые.
- 2.3 Операции над предикатами. Конъюнкция предикатов. Дизъюнкция предикатов. Импликация предикатов. Эквиваленция предикатов. Отрицание предиката.
- 2.4 Кванторы общности. Квантор существования. Область действия квантора.
- 2.5 Равносильные формулы.
- 2.6 Приведенная форма.
- 2.7 Равносильности предикатных формул с кванторами, булевыми операциями и свободными переменными.
- 2.8 Предваренная нормальная форма..
- 3. Элементы теории алгоритмов
- 3.1 Понятие алгоритма. Основные подходы к формализации понятия алгоритма. Блок-схемы алгоритмов.
- 3.2 Машина Тьюринга, ее составные части. Начальная конфигурация, заключительная конфигурация. Команда. Программа. Примеры.
- 3.3 Функции вычислимые по Тьюрингу. Тезис Тьюринга. Проблема остановки.
- 3.4 Рекурсивные функции. Примитивно рекурсивные функции. Частично рекурсивные функции. Общерекурсивные функции.
- 3.5 Тезис Черча. Тезис Тьюринга. Связь рекурсивных функций с машинами Тьюринга.
- 3.6 Нормальные алгоритмы.

4.3 Типовые задачи на зачет и экзамен по дисциплине

Задания для выполнения на зачете

Алгебра высказываний

- 1. Построить таблицу истинности для каждой функции.
- 2. Построить СДНФ и СКНФ для каждой функции по таблице

истинности.

Вариант

3. Получить СДНФ и СКНФ для каждой функции путем преобразований.

задания

Бирс		coomocmemoyem	nooneen a	цифрс
в но.	мере зачетной книжки.			
0.		$\overline{AC} o \overline{\overline{B}} o \overline{A} \vee \overline{C} \vee \overline{A}\overline{B},$ $(\overline{A} \vee \overline{B})\overline{\overline{B}C} o \overline{AB} o \overline{C}$		
1.		$(AC \to B) (\overline{BC} \lor \overline{A} \to \overline{C}),$ $(\overline{A} \lor \overline{B} \to \overline{C}) (\overline{B} \lor C) \to \overline{A}C$	c	
2.		$A \vee \overline{B} \to C(\overline{A} \vee B \to \overline{A}B),$ $A \vee \overline{\overline{B}C} \to \overline{A} \vee \overline{B} \to B\overline{C}$		
3.		$\overline{A} \vee \overline{B}C \to \overline{A} \vee \overline{B} \to A\overline{C},$ $(\overline{A} \vee \overline{B}C \to \overline{B} \vee \overline{C}) \to AB$		
4.		$(B(A \lor C)) \to B)(A \lor B \to C)$ $\overline{A}(B \lor C) \to B(\overline{A} \lor C \to C)$		
5.		$ \overline{A} \vee \overline{BC} \to \overline{A} \vee \overline{B} \to \overline{AC}, \overline{AC} \vee \overline{B} \to \overline{AC} \vee \overline{A} \to \overline{\overline{C}} $		
6.		$ \overline{\overline{A}\overline{B}} \lor C \to \overline{B}C \to \overline{B} \lor C, $ $ A \lor \overline{C} \to \overline{\overline{A}B} \lor C \to \overline{A}C $		
7.		$ \begin{array}{c} B \lor \overline{C} \to \overline{A}\overline{B} \to \overline{C} \lor B\overline{C}, \\ \overline{A} \lor B \to \overline{A} \lor \overline{B}\overline{C} \to \overline{B}C \end{array} $		
8.		$\frac{\left(A \vee BC \to \overline{\overline{B}} \vee C\right)}{A \vee \overline{B} \to \overline{B}(\overline{A} \to \overline{C})} \to AC,$		
9.		$(\overline{A}B \to C)(\overline{A} \lor B) \to \overline{\overline{B}} \lor C$ $\overline{\overline{B}} \lor \overline{C} \to \overline{A} \lor \overline{B}\overline{C} \to BC$,	

соответствует

цифре

последней

Задания для выполнения на экзамене

Логика предикатов

Привести к ПНФ формулы логики предикатов.

Вариант задания соответствует последней цифре в номере зачетной книжки.

	topo ou tomitou musionium
0.	$\overline{\exists x F(x,y)} \to \forall x \forall y G(x,y)$
1.	$\forall x F(x,y) \to \exists y G(x,y)$
2.	$\exists u((\exists x F(x,u) \to \forall x G(x,u))$
3.	$\exists x F(x,z) \& (F(x,z) \to \forall z H(x,z))$
4.	$\forall x \forall y F(x,y) \leftrightarrow \overline{\exists x \exists y G(x,y)}$

5.	$(\overline{\exists x F(x,y)} \to \forall x Q(x,y)) \lor F(x,y)$
6.	$\forall x F(x,y) \to (\forall y F(x,y) \to \overline{\exists x R(x,y)})$
7.	$\overline{\forall x \forall y F(x,y)} \leftrightarrow \exists x \exists y G(x,y)$
8.	$\overline{\forall x \forall y F(x,y) \leftrightarrow \exists x \exists y G(x,y)}$
9.	$\exists u((\exists x F(x,u) \to \forall x G(x,u)))$

Машины Тьюринга

Для машины Тьюринга из примера определите, в какое слово перерабатывает машина слово, если она находится в начальном стандартном состоянии.

Номер варианта задания соответствует последней цифре в номере зачетной книжки.

- 0. $1111 a_0 11111$
- 1. $1111111a_0111$
- 2. $11111 a_0 1111$
- 3. $1 a_0 1 a_0 1 1 1 1 1 1 1$
- 4. $1 a_0 111 a_0 1111$
- 5. $11 a_0 111 a_0 111$
- 6. $11111111 a_011$
- 8. $111 a_0 1 a_0 1111$
- 9. $1 a_0 11 a_0 11111$