МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Электронные вычислительные машины»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Машинное обучение»

Направление подготовки 09.03.01 Информатика и вычислительная техника

Направленность (профиль) подготовки «Программно-аппаратное обеспечение вычислительных систем, комплексов и компьютерных сетей»

> Уровень подготовки Академический бакалавриат

Квалификация (степень) выпускника — бакалавр

Форма обучения — очная, заочная

1 ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено – не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена и теоретического зачета.

Форма проведения экзамена — письменный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса и одна задача. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения экзаменационной оценки.

2 ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции (или ее части) в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Уровень освоения компетенций, формируемых дисциплиной:

Описание критериев и шкалы оценивания тестирования:

Шкала	Критерий
оценивания	
3 балла	Уровень усвоения материала, предусмотренного программой:
(эталонный уровень)	процент верных ответов на тестовые вопросы от 85 до 100%
2 балла	Уровень усвоения материала, предусмотренного программой:
(продвинутый уровень)	процент верных ответов на тестовые вопросы от 70 до 84%
1 балл	Уровень усвоения материала, предусмотренного программой:
(пороговый уровень)	процент верных ответов на тестовые вопросы от 50 до 69%
0 баллов	Уровень усвоения материала, предусмотренного программой:
	процент верных ответов на тестовые вопросы от 0 до 49%

Описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий
3 балла	выставляется студенту, который дал полный ответ на вопрос,
(эталонный уровень)	показал глубокие систематизированные знания, смог привести
	примеры, ответил на дополнительные вопросы преподавателя
2 балла	выставляется студенту, который дал полный ответ на вопрос, но
(продвинутый уровень)	на некоторые дополнительные вопросы преподавателя ответил
	только с помощью наводящих вопросов
1 балл	выставляется студенту, который дал неполный ответ на вопрос в
(пороговый уровень)	билете и смог ответить на дополнительные вопросы только с
	помощью преподавателя
0 баллов	выставляется студенту, который не смог ответить на вопрос

Описание критериев и шкалы оценивания практического задания:

Шкала оценивания	Критерий
3 балла (эталонный уровень)	Задача решена верно
2 балла (продвинутый уровень)	Задача решена верно, но имеются неточности в логике решения
1 балл	Задача решена верно, с дополнительными наводящими
(пороговый уровень)	вопросами преподавателя
0 баллов	Задача не решена

На промежуточную аттестацию (экзамен) выносится тест, два теоретических вопроса и 2 задачи. Максимально студент может набрать 15 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «отлично», «хорошо», «удовлетворительно» и «неудовлетворительно».

Оценка «отлично» выставляется студенту, который набрал в сумме 15 баллов (выполнил все задания на эталонном уровне). Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «хорошо» выставляется студенту, который набрал в сумме от 10 до 14 баллов при условии выполнения всех заданий на уровне не ниже продвинутого. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «удовлетворительно» выставляется студенту, который набрал в сумме от 5 до 9 баллов при условии выполнения всех заданий на уровне не ниже порогового.

Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «неудовлетворительно» выставляется студенту, который набрал в сумме менее 5 баллов или не выполнил всех предусмотренных в течение семестра практических заданий.

З ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
Раздел 1. Основные понятия и определения. Примеры прикладных задач	ПК-2.1	экзамен
Раздел 2. Метрические методы классификации и регрессии	ПК-2.2	экзамен
Раздел 3. Линейные методы классификации и регрессии	ПК-2.1 ПК-2.2	экзамен
Раздел 4. Метод опорных векторов	ПК-2.1 ПК-2.2	экзамен
Раздел 5. Логические алгоритмы классификации	ПК-2.1 ПК-2.2	экзамен
Раздел 6. Многомерная линейная регрессия	ПК-2.1 ПК-2.2	экзамен
Раздел 7. Кластеризация и частичное обучение	ПК-2.1 ПК-2.2	экзамен
Раздел 8. Искусственные нейронные сети	ПК-2.1 ПК-2.2	экзамен
Раздел 9. Алгоритм AdaBoost	ПК-2.1 ПК-2.2	экзамен

4 ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

Промежуточная аттестация в форме экзамена

Код	Результаты освоения ОПОП
компетенции	Содержание компетенций
ПК-2	Способен проектировать и разрабатывать программное обеспечение

ПК-2.1. Проектирует и разрабатывает программное обеспечение

ПК-2.2. Применяет современные инструментальные средства при разработке программного обеспечения

Типовые задания для самостоятельной работы

- 1. Обзор существующих фреймворков машинного обучения
- 2. Развертка среды РуТогсһ
- 3. Развертка среды Caffe
- 4. Развертка среды TensorFlow
- 5. Обзор архитектур сверточных сетей
- 6. Принципы построения классификаторов
- 7. Обучение каскадов Хаара
- 8. Использование ReLU
- 9. Функции штрафа при обучении

- 10. Кластеризация исходных данных
- 11. Принцип разметки обучающей выборки
- 12. Влияние размеров обучающей выборки на качество обучения
- 13. Форматы хранения весовых коэффициентов, заморозка весов нейросети
- 14. Архитектура AlexNet
- 15. Архитектура ResNet
- 16. Архитектура VGG
- 17. Особенности нейросети DALL-E
- 18. Обзор возможностей Midjourney
- 19. Обзор возможностей Colorize
- 20. Обзор возможностей StyleGAN

Вопросы к экзамену по дисциплине

- 1. Классификация методов машинного обучения
- 2. Основные виды машинного обучения
- 3. Задачи обучения по прецедентам, основные понятия и определения
- 4. Обучающая выборка, объекты и их признаки
- 5. Функция потерь, виды функции потерь
- 6. Проблема переобучения
- 7. Пример задач классификации
- 8. Контроль переобучения (скользящий контроль leave-one-out)
- 9. Решающий список (достоинства и недостатки)
- 10. Бинарное решающее дерево
- 11. В чем заключается задача редукции решающего дерева
- 12. Цели и задачи кластеризации
- 13. Метод К-средних
- 14. Алгоритм DBSCAN (Density-Based Spatial Clustering of Application with Noise)
- 15. Линейная модель нейрона МакКаллока-Питтса
- 16. Типовые структуры нейронных сетей
- 17. Принцип обучения нейронной сети кратко (Метод стохастического градиента кратко).
- 18. Что такое «сокращение весов» в обученной модели
- 19. Недостатки метода стохастического градиента и как с ними бороться
- 20. Метрические алгоритмы классификации понятие расстояния
- 21. Как определяется понятие отступа в метрических алгоритмах классификации
- 22. Метод к-ближайших соседей
- 23. Сеть Кохонена устройство и работа
- 24. Сеть Кохонена принцип обучения
- 25. Где применяются задачи восстановления регрессии
- 26. Отличие линейной регрессии от полиномиальной
- 27. Линейный классификатор
- 28. Принцип обучения линейного классификатора
- 29. Метод опорных векторов в задачах классификации отличие от линейной классификации
- 30. Что такое линейно разделимая выборка
- 31. Что такое линейно неразделимая выборка
- 32. Преимущества и недостатки SVM

Заведующий кафедрой ЭВМ