МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Вычислительной и прикладной математики»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.О.14 «Интегралы и дифференциальные уравнения»

Направление подготовки — 09.03.04 «Программная инженерия» ООП академического бакалавриата «Программная инженерия» Квалификация выпускника — бакалавр

Формы обучения – очная

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур, оцениваемых ресурсов в дистанционных учебных курсах), предназначенных для оценки качества освоения обучающимися дисциплины «Интегралы и дифференциальные уравнения» как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретённых компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний, обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях; по результатам выполнения контрольных работ; по результатам выполнения обучающимися домашних заданий; по результатам проверки качества конспектов лекций и иных материалов. При оценивании (определении) результатов освоения дисциплины применяется традиционная шкала оценивания («отлично», «хорошо», «удовлетворительно», «неудовлетворительно»).

Текущая аттестация студентов проводится на основании результатов выполнения ими домашних заданий (ДЗ) и контрольных работ (КР), и оформляется в виде ведомостей по системе 0-1-2.

По итогам изучения разделов дисциплины «Интегралы и дифференциальные уравнения» обучающиеся в конце учебного семестра проходят промежуточную аттестацию. Форма проведения аттестации — экзамен в устной или письменной формах или тест: электронный билет, формируемый случайным способом. Экзаменационные билеты и перечни вопросов, задач, примеров, выносимых на промежуточную аттестацию, составляются с учётом содержания тем учебной дисциплины и подписываются заведующим кафедрой.

В экзаменационный билет или вариант теста включаются два теоретических вопроса и до четырёх практических задач по темам дисциплины (Протокол заседания кафедры Высшей математики №10 от от 26 апреля 2017г.).

Паспорт оценочных материалов по дисциплине

№	Контролируемые модули (темы)	Код контроли-	Вид, метод, форма	
	дисциплины	руемой компе-	оценочного меро-	
	(результаты по разделам)	тенции (или её	приятия	
		части)		
Семестр 2				
1	Неопределенный интеграл	ОПК – 1.1-3	Домашние задания	

		ОПК – 1.1-У	Контрольная работа
		ОПК – 1.1-В	Экзамен
		ОПК – 1.2-3	
		ОПК – 1.2-У	
		ОПК – 1.2-В	
2	Определенный интеграл и его при-	ОПК – 1.1-3	Домашние задания
	ложения	ОПК – 1.1-У	Контрольная работа
		ОПК – 1.1-В	Экзамен
		ОПК – 1.2-3	
		ОПК – 1.2-У	
		ОПК – 1.2-В	
3	Несобственные интегралы	ОПК – 1.1-3	Домашние задания
		ОПК – 1.1-У	Контрольная работа
		ОПК – 1.1-В	Экзамен
		ОПК – 1.2-3	
		ОПК – 1.2-У	
		ОПК – 1.2-В	
4	Дифференциальные уравнения пер-	ОПК – 1.1-3	Домашние задания
	вого и высших порядков	ОПК – 1.1-У	Контрольная работа
		ОПК – 1.1-В	Экзамен
		ОПК – 1.2-3	
		ОПК – 1.2-У	
		ОПК – 1.2-В	
5	Линейные дифференциальные урав-	ОПК – 1.1-3	Домашние задания
	нения	ОПК – 1.1-У	Контрольная работа
		ОПК – 1.1-В	Экзамен
		ОПК – 1.2-3	
		ОПК – 1.2-У	
		ОПК – 1.2-В	
6	Системы ДУ	ОПК – 1.1-3	Домашние задания
		ОПК – 1.1-У	Контрольная работа
		ОПК – 1.1-В	Экзамен
		ОПК – 1.2-3	
		ОПК – 1.2-У	
		ОПК – 1.2-В	

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по домашним заданиям, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки. Критерии оценивания промежуточной аттестации представлены в таблице.

Шкала оценивания	Критерии оценивания
«отлично»	студент должен: продемонстрировать глубокое и прочное ус-
	воение знаний материала; исчерпывающе, последовательно,
	грамотно и логически стройно изложить теоретический мате-
	риал; правильно формулировать определения; уметь сделать
	выводы по излагаемому материалу; безупречно ответить не
	только на вопросы билета, но и на дополнительные вопросы в
	рамках рабочей программы дисциплины; продемонстрировать
	умение правильно выполнять практические задания, преду-
	смотренные программой;
«хорошо»	студент должен: продемонстрировать достаточно полное
	знание материала; продемонстрировать знание основных тео-
	ретических понятий; достаточно последовательно, грамотно и
	логически стройно излагать материал; уметь сделать доста-
	точно обоснованные выводы по излагаемому материалу; отве-
	тить на все вопросы билета; продемонстрировать умение пра-
	вильно выполнять практические задания, предусмотренные
	программой, при этом возможно допустить непринципиаль-
	ные ошибки.
«удовлетворительно»	студент должен: продемонстрировать общее знание изучае-
	мого материала; знать основную рекомендуемую программой
	дисциплины учебную литературу; уметь строить ответ в соот-
	ветствии со структурой излагаемого вопроса; показать общее
	владение понятийным аппаратом дисциплины; уметь устра-
	нить допущенные погрешности в ответе на теоретические во-
	просы и/или при выполнении практических заданий под руко-
	водством преподавателя, либо (при неправильном выполне-
	нии практического задания) по указанию преподавателя вы-
	полнить другие практические задания того же раздела дисци-
	плины.
«неудовлетворительно»	ставится в случае: а) если студент выполнил не все задания,
	предусмотренного учебным графиком (не зачтен хотя бы один
	типовой расчет или контрольная работа);
	б) если студент после начала экзамена отказался его сдавать
	или нарушил правила сдачи экзамена (списывал, подсказывал,
	обманом пытался получить более высокую оценку и т.д.);
	в) незнания значительной части программного материала; не
	владения понятийным аппаратом дисциплины; существенных
	ошибок при изложении учебного материала; неумения стро-
	ить ответ в соответствии со структурой излагаемого вопроса;
	неумения делать выводы по излагаемому материалу.

Фонд оценочных средств дисциплины «Интегралы и дифференциальные уравнения» включает

- задачи для практических занятий;
- варианты контрольных работ;
- варианты домашних заданий;
- -оценочные средства промежуточной аттестации;
- варианты тестовых заданий в дистанционных учебных курсах;
- задачи для проверки остаточных знаний.

Задачи для практических занятий.

В ходе практических занятий происходит решение задач, представленных в сборниках задач для практических занятий и самостоятельной работы, которые доступны для скачивания в электронном виде.

1. Интеграл. Основы линейной алгебры. Функции многих переменных. Обыкновенные дифференциальные уравнения: задачи для практ. занятий и самост. работы (2-й семестр) / А. В. Дубовиков [и др.]; РГРТУ. - Рязань, 2009. - 60c.URL: http://rsreu.ru/component/docman/doc_download/1156-2-j-semestr-zadachi

Варианты контрольных работ.

Текущая проверка знаний, умений и навыков предусматривает в течение каждого семестра периодические опросы и выполнение контрольных работ на практических занятиях. Типовые контрольные работы реализуется в виде типовых вариантов контрольных работ по отдельным темам, которые выполняются студентами в аудиториях. Контрольные опросы производятся на основании соответствующих типовых вопросов промежуточной аттестации.

Контрольная работа №1 Техника интегрирования

Вариант 1

Найти неопределенные интегралы

$$1. \int \left(7 - \frac{4}{3x} + \frac{x^2 \cdot \sqrt{x}}{6}\right) dx$$

$$2. \quad \int \frac{dx}{\sin^2(5x+3)}$$

3.
$$\int \frac{dx}{9+7x^2}$$

4.
$$\int \frac{\cos x \, dx}{\sqrt[5]{\sin^2 x}}$$

5.
$$\int \frac{(\arctan 4x)^3 dx}{1+16x^2}$$

6.
$$\int (2x-3)\sin\frac{x}{2}dx$$

7.
$$\int (x^2 - 4) \ln x \, dx$$

8.
$$\int \frac{x^2 - 4}{x(x^2 + 2)} dx$$

$$9. \int \frac{\sin^3 x}{\cos^4 x} dx$$

10.
$$\int \frac{\sqrt[3]{x} dx}{1 + \sqrt[3]{x^2}}$$

Контрольная работа №2 Определенный интеграл

Вариант 1

1. Вычислить a)
$$\int_{0}^{\frac{\pi}{2}} (3x-1)\sin x \ dx$$
, б) $\int_{0}^{1} \frac{1+xdx}{\sqrt{4-x^2}}$.

- **2.** Найти площадь фигуры D: $2x = y^2$, $2y = x^2$
- **3.** Найти длину дуги кривой $L: \rho = e^{\frac{3\phi}{4}}; \ 0 \le \phi \le \frac{\pi}{2}.$
- **4.** Найти объём тела вращения вокруг оси (0x) $y^2 = 4x$; $0 \le x \le 2$.

5. Вычислить несобственные интегралы *a*)
$$\int_{0}^{+\infty} \frac{dx}{x^2 + 4x + 8}$$
, *б*) $\int_{0}^{3} \frac{dx}{\sqrt{9 - x^2}}$.

Контрольная работа №3 Дифференциальные уравнения

Вариант 1

Решить дифференциальные уравнения:

$$1. \quad 4xdx - 3ydy = 3x^2ydy - 2xy^2dx$$

2.
$$y' - y / x = x^2$$

$$3. \quad y'''x \ln x = y''$$

4.
$$x'' - 6x' + 9x = \sin 3t + te^t + 1 + e^{2t} \cos t$$

$$x'' + 3x' = \frac{9e^{3t}}{1 + e^{3t}}$$

Варианты домашних заданий.

В процессе изучения каждой темы студенты обязаны самостоятельно выполнить домашние задания по отдельным темам.

Домашние задания реализуется в виде типовых вариантов домашних заданий по отдельным темам, которые выполняются студентами самостоятельно во внеаудиторное время.

- ДЗ 1. Интегральное исчисление функций одного переменного.
- ДЗ 2. Дифференциальные уравнения.

Все домашние задания представлены в электронном виде и доступны для скачивания. URL: http://rsreu.ru/faculties/faitu/kafedri/vm/menu-1193

Пример варианта домашнего задания приведён ниже.

Домашнее задание по теме «Интегралы»

Вариант 1		
$1. \int \frac{\arctan x dx}{1 + x^2}$	2. ∫ cos 2x cos 4x dx	
$3. \int (x^2+1)e^{2x}dx$	$4. \int \frac{x^2 + 8}{2 - x^2 - x} dx$	
5. $\int \frac{2x^2 + 7x + 7}{(x+1)^2(x+2)} dx$	6. $\int \frac{3x^2 + 7x + 5}{(x+1)(x^2 + 2x + 2)} dx$	
$7. \int \frac{\mathrm{d}x}{2\sin x - 3\cos x + 2}$	8. ∫ sin ⁴ x dx	
$9. \int \sqrt{\frac{2x-1}{4-2x}} dx$	10. $\int \frac{x^2 dx}{\sqrt{4 - x^2}}$ 12. $\int_{\frac{\pi}{2}}^{2\operatorname{arctg2}} \frac{dx}{\sin^2 x (1 - \cos x)}$	
$11. \int_{0}^{\frac{\pi}{3}} x \cos x dx$	12. $\int_{\frac{\pi}{2}}^{2\operatorname{arctg2}} \frac{\mathrm{dx}}{\sin^2 x (1 - \cos x)}$	
13. D: $2x = y^2$, $2y = x^2$	14. D: $\begin{cases} x = t - \sin t, \\ y = 1 - \cos t, \end{cases}$ $(0 \le t \le 2\pi) y = 0$	
15. D: $\rho = 2\cos 2\varphi$, $0 \le \varphi \le \frac{\pi}{2}$	16. L: $y = \ln x$; $2 \le x \le 4$	
17. $L: \begin{cases} x = 3(t - \sin t), \\ y = 3(1 - \cos t), 0 \le t \le \frac{\pi}{2} \end{cases}$	18. $L: \rho = e^{\frac{3\phi}{4}}; \ 0 \le \phi \le \frac{\pi}{2}$	
19. $V: x^2 + y^2 + \frac{z^2}{4} = 1$, z = 0; $z = 1$	20. $y^2 = 4x$; $0 \le x \le 2$ $(0x)$	
$z = 0; z = 1$ 21. $\int_{0}^{+\infty} \frac{dx}{x^2 + 2x + 2}$	22. $\int_{1}^{+\infty} \frac{\sqrt{x} dx}{\sqrt{(x+1)(x+2)^2}}$ 24. $\int_{2}^{3} \frac{e^x}{(x-3)^2} dx$	
23. $\int_{2}^{3} \frac{2x}{\sqrt{x^2 - 4}} dx$	$24. \int_{2}^{3} \frac{e^{x}}{(x-3)^{2}} dx$	

Домашнее задание по теме «Дифференциальные уравнения»

Задания

- 1. Для данного дифференциального уравнения методом изоклин построить поле направлений.
- 2. Построить дифференциальное уравнение первого порядка по однопараметрическому семейству кривых.
- 3. Составить дифференциальное уравнение по заданной физической задаче.

- 4. Найти общий интеграл дифференциального уравнения с разделяющимися переменными.
- 5. Найти общий интеграл однородного дифференциального уравнения первого порядка.
- 6. Найти общий интеграл дифференциального уравнения, приводящегося к однородному: а) невырожденный случай; б) вырожденный случай.
- 7. Решить линейное неоднородное дифференциальное уравнение первого порядка методом вариации произвольной постоянной.
- 8. Найти решение задачи Коши для уравнения Бернулли.
- 9. Найти общий интеграл уравнения в полных дифференциалах.
- 10. Решить уравнение Лагранжа или Клеро.
- 11. Найти общее решение дифференциального уравнения при отсутствии неизвестной функции и младших производных.
- 12. Найти решение задачи Коши для дифференциального уравнения при отсутствии независимой переменной.
- 13. Другие случаи понижения порядка (однородность, обобщенная однородность, выделение полной производной).
- 14. Исследовать на линейную зависимость систему функций.
- 15. По известным корням характеристического уравнения найти общее решение дифференциального уравнения с постоянными коэффициентами.
- 16. Составить общее решение линейного однородного дифференциального уравнения (без нахождения коэффициентов для частного решения ЛНДУ).
- 17. Найти решение задачи Коши.
- 18. Найти решение задачи Коши методом вариации произвольной постоянной.
- 19. Решить уравнение Эйлера.
- 20. Решить систему линейных однородных дифференциальных уравнений: а) методом исключения; б) матричным методом.
- 21. Решить систему линейных неоднородных дифференциальных уравнений: а) методом исключения; б) методом вариации произвольных постоянных.

Вариант 1

1. $y' = x^2$	2. $\frac{x^2}{4} + (y+C)^2 = C$	
3. В резервуаре находится 200 л. раствора 10% концентрации. Каждую минуту в резервуар вливается 3 л. воды и после перемешивания столько же раствора вытекает. Сколько соли останется в резервуаре через 7 минут?		
4. $xyy' = 1 - x^2$	5. $(xy + y^2)dx - x^2dy = 0$	
6. a) $2y' = \frac{x + 2y - 3}{x - 1}$	6.6) $y' = \frac{x+2y-1}{3x+6y+2}$	
7. $2y' - \frac{1}{x}y = (x + \ln 2x)'$	8. $y' - \frac{4y}{x} = x\sqrt{y}$, $y(1) = 0$	
$9. \ e^{-y} dx + (2 - xe^{-y}) dy = 0$	10. $y = (x+1)(y')^2$	
$11. \ \ y'' - y'ctgx = 2x\sin x$	12. $y^2y'' = 1$, $y(0) = 2$, $y'(0) = -1$	
13. $xyy'' - x(y')^2 = yy'$	14. $\{1, x, x^2, x^3\}$	
15. $k_{1,2,3} = -1; k_{4,5} = 0; k_{6,7} = \pm 3i; k_8 = 5; k_{9,10} = k_{11,12} = 2 \pm i$		

16.
$$y'' + 7y' + 12y = \int_{0}^{x} e^{-3t} dt + (x^{2} + 1)' + \cos x + e^{x} \sin 2x + xe^{-3x} + x^{3} + x \sin x$$
17.
$$y'' + 10y' + 16y = \cos x, \quad y(0) = y'(0) = 1$$
18.
$$y'' - 4y' + 5y = \frac{e^{2x}}{\cos x}, \quad y(0) = 2, y'(0) = 4$$
19.
$$x^{2}y'' - 4xy' + 6y = 0$$
20.
$$\begin{cases} \dot{x} = 4x - 5y + 2z \\ \dot{y} = 5x - 7y + 3z \\ \dot{z} = 6x - 9y + 4z \end{cases}$$
21.
$$\begin{cases} \dot{x} = -2x - 6y + te^{3t} \\ \dot{y} = 2x + 5y \end{cases}$$

Оценочные средства промежуточной аттестации

Фонд оценочных средств промежуточной аттестации, проводимой в форме экзамена или теста, включает

- 1. типовые теоретические вопросы;
- 2. дополнительные вопросы;
- 3. типовые практические задачи.

Оценочные средства приведены ниже. Разрешается и иная формулировка вопроса или примера, без изменения его смысла или содержания, например, дробление, изменение условий или иное.

Примеры типовых теоретических вопросов (уровень усвоения хорошо и отлично)

- 1. Первообразная. Неопределённый интеграл и его свойства.
- 2. Методы интегрирования (простейшие приёмы интегрирования, замена переменной и интегрирование по частям).
- 3. Простейшие рациональные дроби и их интегрирование.
- 4. Разложение многочлена с действительными коэффициентами на неприводимые множители. Разложение рациональных дробей на простейшие. Интегрирование рациональных функций.
- 5. Интегрирование иррациональных функций.
- 6. Интегрирование тригонометрических функций.
- 7. Задачи, приводящие к понятию определённого интеграла. Определение интеграла Римана.
- 8. Свойства интеграла Римана.
- 9. Основные классы интегрируемых функций.
- 10. Определённый интеграл с переменным верхним пределом и его свойства.
- 11. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в определённом интеграле.
- 12. Приложение определённого интеграла к вычислению площади.
- 13. Приложение определённого интеграла к вычислению объёма.

- 14. Определение длины дуги. Приложение определённого интеграла к вычислению длины дуги.
- 15. Несобственные интегралы с бесконечными пределами от неограниченных функций; их основные свойства и признаки сходимости.
- 16. ОДУ 1-го порядка: определение, формы записи. Задача Коши, теорема существования и единственности решения задачи Коши.
- 17. Основные классы ОДУ 1-го порядка, интегрируемые в квадратурах (уравнения с разделяющимися переменными, однородные ДУ и приводящиеся к ним, линейные уравнения и уравнения Бернулли).
- 18. Дифференциальные уравнения высших порядков. Задача Коши. ОДУ высших порядков, допускающие понижение порядка.
- 19. Линейные дифференциальные уравнения n-го порядка, однородные (ЛОДУ) и неоднородные (ЛНДУ).
- 20. Общая теория ЛОДУ и ЛНДУ. Определитель Вронского. Основная теорема о структуре общего решения ЛОДУ (ЛНДУ).
- 21. ЛОДУ с постоянными коэффициентами.
- 22. ЛНДУ с правой частью специального вида.
- 23. Метод вариации произвольных постоянных для решения ЛНДУ.
- 24. Нормальная система ДУ. Геометрический смысл решения. Задача Коши для нормальной СДУ.
- 25. Метод исключения для решения нормальной СДУ.

Примеры типовых теоретических вопросов (уровень усвоения удовлетворительно)

- 1. Составить таблицу неопределённых интегралов.
- 2. Привести формулу замены переменного под знаком неопределённого интеграла.
- 3. Привести формулу интегрирования по частям в неопределённом интеграла.
- 4. Дать определение интегральной суммы функции y = f(x) на отрезке [a, b].
- 5. Записать определение $\int_a^b f(x)dx$.
- 6. Сформулировать теорему о среднем значении функции y = f(x) на отрезке [a, b].
- 7. Дать определение интеграла с переменным верхним пределом.
- 8. Записать формулу Ньютона-Лейбница.
- 9. Привести формулу замены переменного под знаком определённого интеграла.
- 10. Привести формулу интегрирования по частям в определённом интеграла.
- 11. Площадь фигуры, заданной уравнением $r = r(\varphi), \varphi \in [\alpha, \beta]$, в полярной системе координат, вычисляется по формуле $S = \dots$
- 12. Длина кривой, заданной уравнением $y = f(x), x \in [a, b]$, в прямоугольной декартовой системе координат, вычисляется по формуле $L = \dots$
- 13. Объем тела, образованного вращением графика функции $y = f(x), x \in [a, b]$, вокруг оси Ох вычисляется по формуле V =
- 14. Длина кривой, заданной уравнением $r = r(\varphi), \varphi \in [\alpha, \beta]$, в полярной системе координат, вычисляется по формуле $L = \dots$
- 15. Дать определение несобственного интеграла первого рода.
- 16. Дать определение несобственного интеграла второго рода.

- 17. Записать общий вид дифференциального уравнения с разделяющимися переменными.
- 18. Записать общий вид линейного неоднородного дифференциального уравнения первого порядка.
- 19. Сформулировать задачу Коши для дифференциального уравнения y' = f(x, y).
- 1. Чтобы понизить порядок дифференциального уравнения $F(x,y^{(k)},y^{(k+1)},...,y^{(n)})=0$ надо сделать замену переменных $u(\)=\cdots$ При этом порядок уравнения понизится на ...
- 2. Записать общий вид линейного однородного дифференциального уравнения n —го порядка.
- 3. Сформулировать теорему о структуре общего решения ЛОДУ n —го порядка.
- 4. Сформулировать теорему о структуре общего решения ЛНДУ n —го порядка.

Примеры типовых задач (уровень усвоения удовлетворительно)

1. Вычислить
$$\int (2x+3)e^{4x}dx =$$

$$2. \qquad \text{Вычислить} \int \frac{5dx}{x^2 + 2x - 3} =$$

$$3. \qquad \text{Вычислить} \int \frac{dx}{x \ln x} =$$

4. Вычислить
$$\int \frac{e^x dx}{e^{2x} + 3}$$

5. Вычислить
$$\int \frac{xdx}{\sqrt{3-x^4}}$$

6. Вычислить
$$\int x \cos 3x dx$$

7. Вычислить
$$\int \frac{1 + \ln(x+2)}{x+2} dx$$

8. Вычислить
$$\int \frac{2x-1}{(x-1)(x-2)} dx$$

9. Вычислить
$$\int \frac{x^3 dx}{x^2 - 6x + 5}$$

10. Вычислить
$$\int \frac{dx}{x^2 - 4x + 8}$$

11. Вычислить
$$\int \frac{\sqrt{x} dx}{1+\sqrt{x}}$$

12. Вычислить
$$\int \sqrt{4-x^2} dx$$

13. Вычислить
$$\int \frac{dx}{4 - 5\sin x}$$

14. Вычислить
$$\int \frac{dx}{3\sin x - 4\cos x}$$

- 15. Вычислить $\int \frac{\sin 2x \, dx}{3 + 4\sin^2 x}$
- 16. Вычислить интеграл $\int_{2}^{3} \frac{2x+5}{(x-1)(x-5)} dx$.
- 17. Вычислить интеграл $\int_0^1 (2x+3)e^{5x} dx$
- 18. Вычислить интеграл $\int_{0}^{\pi} \frac{dx}{3 + 2\cos x}$
- 19. Найти площадь области, ограниченной кривыми $y = x^2/2$ и $y = 2 \frac{3x}{2}$, заданными в прямоугольной декартовой системе координат
- 20. Найти площадь фигуры, ограниченной кривой $y = \ln x$ и прямыми x = e, $x = e^2$, y = 0.
- 21. Найти длину дуги кривой $y = 2x^{\frac{3}{2}}$, $0 \le x \le 11$
- 22. Найти объем тел, образованных вращением фигуры, ограниченной линиями $y = \frac{1}{x}$, y = 0, $x_1 = 1$, $x_2 = 2$ вокруг оси Ох.
- 23. Вычислить несобственный интеграл $\int\limits_{1}^{+\infty} \frac{x^4 dx}{\left(x^5 + 1\right)^4}$
- 24. Найти общее решение линейного дифференциального уравнения $y' + \frac{y}{x} = \frac{\cos 2x}{x}$ методом вариации произвольной постоянной.
- 25. Решить задачу Коши для линейного дифференциального уравнения первого порядка $y' - \frac{y}{x} = 3x$, y(1) = 4.
- 26. Записать фундаментальную систему решений уравнения y''' 5y'' + 9y' 5y = 0.
- 27. Найти общее решение ЛОДУ, если корни его характеристического уравнения имеют вид: $k_1 = -2$, $k_{2,3,4} = 0$, $k_{5,6} = 3$.
- 28. Найти общее решение ЛОДУ y'' 2y' + 5y = 0.
- 29. Найти общее решение уравнения $y'' 2y' 3y = e^{4x}$ по виду правой части.

Варианты тестовых заданий в дистанционных учебных курсах

Текущий контроль знаний студентов в может проводится в виде компьютерного тестирования по различным модулям (темам) программы.

Компьютерные тесты представлены в дистанционных учебных курсах на базе системы управления обучением Moodle: http://cdo.rsreu.ru/

Доступ к курсам предоставляется по паролю из внутренней информационной системы организации и из глобальной сети Интернет.

При создании тематических тестов по математике использовались следующие типы вопросов:

- 1) множественный выбор необходимо выбрать один или несколько верный ответов среди предложенных,
 - 2) числовой ответ необходимо впечатать числовой ответ с клавиатуры,
- 3) на соответствие ответ на каждый из вопросов нужно выбрать из предложенного списка,
- 4) краткий ответ необходимо впечатать одно или несколько «слов» (это могут быть как собственно слова, так и наборы определенных символов),
 - 5) вычисляемый необходимо ввести числовой ответ с клавиатуры.

Внутри каждой учебной темы сформирован обширный банк разнообразных вопросов, которые разбиты на категории. Каждая категория содержит однотипные задачи, объединенные одним учебным вопросом, например, решение ЛОДУ 2 порядка и т.д. Тест формируется на основе выбора случайного вопроса из каждой указанной категории.

Задачи для проверки остаточных знаний

При проверке остаточных знаний студентам разрешается использовать конспекты лекций и справочную литературу.

Примеры типовых задач для проверки остаточных знаний

- 1. Функция F(x) является первообразной функции f (x), если:
 - a) F(x) = f'(x),
 - **6)** F'(x) = f(x),
 - B) F'(x) = f(x) + c.
- 2. Интеграл от функции $\int f(k \cdot x + b) \int \frac{dx}{x}$ равен:
 - a) $\frac{1}{k} \cdot F(k \cdot x + b) + c$,
 - $\mathsf{G})\ F(k\cdot x+b)+c\ ,$
 - B) $F\left(\frac{1}{k} \cdot x + b\right) + c$.
- 3. Интеграл $\int \frac{dx}{x}$ равен:
 - a) ln|x|,
 - $6) \frac{x^{-2}}{-2}$
 - **B)** $\ln |x| + c$.
- 4. Интеграл $\int \frac{dx}{1+x^2}$ равен:
 - a) arctg(x)+c,
 - δ) arctg(x),
 - B) $\arcsin(x)$.
- 3. Множество всех первообразных функции $f(x) = x^{-1}$ при x > 0 имеет вид:

Omeem:
$$\ln(x) + c$$
.

4. Интеграл $\int \left(2 \cdot x^3 - \frac{3}{x}\right) dx$ равен:

Omsem:
$$\frac{x^4}{2} - 3 \cdot \ln|x| + c$$
.

5. Интеграл $\int 5^x dx$ равен:

Omeem:
$$\frac{5^x}{\ln 5} + c$$
.

6. Интеграл $\int \cos\left(\frac{x}{2} + 5\right) \cdot dx$ равен:

Omeem:
$$2 \cdot \sin\left(\frac{x}{2} + 5\right) + c$$
.

7. Интеграл $\int tg(x) \cdot dx$ равен:

Omeem:
$$-\ln|\cos(x)| + c$$
.

8. Если $f'(x) = \cos(x)$, то функция f(x) имеет вид:

Omeem:
$$f(x) = \sin(x) + c$$
.

9. Формула Ньютона – Лейбница имеет вид:

a)
$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
,

$$\delta) \int_{a}^{b} f(x) dx = F(a) - F(b),$$

$$\mathbf{B}) \int_{a}^{b} f(x) dx = F(a) \cdot F(b).$$

10. Определённый интеграл $\int_a^b k \cdot f(x) dx$ равен:

a)
$$\frac{1}{k} \int_{a}^{b} f(x) dx$$
,

6)
$$k \cdot \int_a^b f(x) dx$$
,

B)
$$k \cdot \int_{a}^{b} f(k \cdot x) dx$$
.

11. Объем тела, полученного в результате вращения криволинейной трапеции вокруг оси абсцисс вычисляется по формуле:

a)
$$\pi \left| \int_a^b f^2(x) dx \right|$$
,

$$6) \pi \left| \int_a^b f^2(x) dy \right|,$$

$$\mathbf{B})\left|\int_{a}^{b}f_{1}(x)-f_{2}(x)dx\right|.$$

- 12. Объем тела, полученного в результате вращения криволинейной трапеции вокруг оси ординат вычисляется по формуле:
 - **a)** $\pi \left| \int_a^b f^2(y) dy \right|$,
 - $6) \pi \left| \int_{a}^{b} f^{2}(x) dx \right|,$
 - $\mathbf{B}) \left| \int_{a}^{b} f_{1}(x) f_{2}(x) dx \right|.$
- 13. Площадь криволинейной трапеции, ограниченной графиками функций: $y = f_2(x)$, $y = f_2(x)$ и прямыми: x = a и x = b.
 - **a)** $\left| \int_{a}^{b} f_{1}(x) f_{2}(x) dx \right|,$
 - $\delta) \pi \left| \int_{a}^{b} f^{2}(x) dx \right|,$
- 14. Результат вычисления интеграла $\int_{0}^{\pi} \cos \left(\frac{\pi}{3} 3x \right) dx$ равен:

Ответ: $\frac{\sqrt{3}}{3}$.

15. Результат вычисления интеграла $\int\limits_0^\pi \cos(3x) \cdot \sin(2x) dx$ равен:

Ответ: -0,8.

16. Значение интеграла $\int_{1}^{2} x^{-3} dx$ равно:

Ombem: $\frac{3}{8}y = \sqrt{x}$.

17. Площадь фигуры, ограниченной линиями: $y = \sqrt{x}$, y = 2, y = 9 равна:

Ответ: 3.

18. Результат вычисления интеграла $\int_{1}^{+\infty} x^{-4} dx$ равен:

Ответ: 5.

- 19. Дифференциальные уравнения с разделяющимися переменными имеют вид:
 - a) y' + p(x, y) + g(x) = 0,
 - **6)** $f_1(x) \cdot g(y) \cdot dx = f_2(x) \cdot dy$,
 - B) $P(x, y) \cdot dy = Q(x, y) dy$.

Ответ: б.

- 20. Линейное дифференциальное уравнение имеет вид:
 - a) $P(x, y) \cdot dy = Q(x, y) dy$,
 - $6) f_1(x) \cdot g(y) \cdot dx = f_2(x) \cdot dy,$
 - **B)** y' + p(x, y) + g(x) = 0.
- 21. Линейные однородные дифференциальные уравнения второго порядка имеют вид:
 - **a)** $y'' + p \cdot y' + qy = 0$,

6)
$$y'' + p(x, y') + q(x, y) = 0$$
,

B)
$$y'' + p \cdot y' + qy = f(x)$$
.

22. Общим решением дифференциального уравнения $y'' - 5 \cdot y' + 6 \cdot y = 0$ является:

Ombem:
$$y = C_1 \cdot e^{2 \cdot x} + C_2 \cdot e^{3 \cdot x}$$
.

23. В результате интегрирования дифференциального уравнения $y'' = \sin(x)$ получим:

Omeem:
$$y = -\sin(x) + C_1 \cdot x + C_2$$
.

24. Решение дифференциального уравнения $y' \cdot \sin(x) + y\cos(x) = 0$ при $x = -\frac{\pi}{2}$ имеет вид:

Omeem:
$$y = -C$$
.

Составила доцент кафедры ВМ к.ф.-м.н., доцент

К.А. Ципоркова

Заведующий кафедрой BM к.ф.-м.н., доцент

К.В.Бухенский

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Бухенский Кирилл ЗАВЕДУЮЩИМ Валентинович, Заведующий кафедрой КАФЕДРЫ

25.06.25 18:28 (MSK)

Простая подпись