МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Ф. УТКИНА

Кафедра «Промышленная электроника»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДИСЦИПЛИНЫ

ОПТИКО-ЭЛЕКТРОННЫЕ СИСТЕМЫ

Специальность 12.05.01 «Электронные и оптико-электронные приборы и системы специального назначения»

ОПОП

«Оптико-электронные информационно-измерительные приборы и системы»

Квалификация выпускника – инженер Формы обучения – очная

учебно-методических Оценочные материалы ЭТО совокупность заданий, описаний форм материалов (контрольных процедур), предназначенных для оценки качества освоения обучающимися данной профессиональной образовательной дисциплины как части основной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях. При оценивании результатов освоения практических занятий применяется шкала оценки «зачтено — не зачтено». Количество практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена.

Форма проведения экзамена — письменный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения экзаменационной оценки.

Паспорт оценочных материалов по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контроли- руемой компетен- ции (или её части)	Вид, метод, форма оценочного мероприятия
1	2	3	4
1	Раздел 1 Введение	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-1.2-3 ПК-1.2-У ПК-1.2-В	Экзамен
2	Раздел 2 Оптическое излучение	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-В	Экзамен
3	Раздел 3 Физические основы функционирования оптико—электронных приборов и систем	ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-В ПК-3.1-3 ПК-3.1-У ПК-3.1-В ПК-3.2-3 ПК-3.2-У ПК-3.2-В	Экзамен
4	Раздел 4 Оптико-электронные приборы, устройства и системы	ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-В ПК-3.1-3 ПК-3.1-У ПК-3.1-В	Экзамен
5	Раздел 5 Сканирование, модуляция и демодуляция, фильтрация сигналов в оптико-электронных приборах	ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-В ПК-3.1-3 ПК-3.1-У	Экзамен

	ПК-3.1-В	
	ПК-3.2-3	
	ПК-3.2-У	
	ПК-3.2-В	

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4) Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция)
 - 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

«Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по

окончании вуза без дополнительных занятий по соответствующей дисциплине.

Типовые контрольные задания или иные материалы

Вопросы к экзамену по дисциплине

- 1. Природа оптического излучения. Оптические спектры.
- 2. Энергетические и фотометрические единицы, используемые в оптике.
- 3. Взаимодействие излучения с поглощающими средами. Распространение оптического излучения в атмосфере.
- 4. Некогерентные источники излучения. Газоразрядные лампы и светодиоды.
- 5. Когерентные источники излучения. Твердотельные, полупроводниковые и газовые лазеры.
- 6. Оптические системы, применяемые в оптико-электронных приборах и устройствах.
- 7. Основные закономерности внешнего фотоэффекта. Квантовая эффективность внешнего фотоэффекта. Приемники излучения на основе внешнего фотоэффекта.
- 8. Вакуумные фотоэлементы. Основные типы и характеристики.
- 9. Фотоэлектронные умножители (ФЭУ). Проблема регистрации одиночных фотонов.
- 10. Спектральная чувствительность и быстродействие вакуумных фотоприемников.
- 11. Основные закономерности внутреннего фотоэффекта. Квантовая эффективность внутреннего фотоэффекта.
- 12. Приемники излучения на основе внутреннего фотоэффекта. Фоторезисторы.
- 13. Фотогальванические приемники излучений.
- 14. Режимы работы фотогальванических приемников излучения. Фотогальванический и фотодиодный режимы работы.
- 15. Спектральная чувствительность и быстродействие фотоприемников на основе внутреннего фотоэффекта.
- 16. Р-і-п-фотодиоды.
- 17. Фотоприемники с внутренним усилением.
- 18. Фотоприемники для регистрации инфракрасного излучения.
- 19. Координатно-чувствительные фотоприемники.
- 20. Элекронно-оптические преобразователи инфракрасного и рентгеновского излучений в видимое.
- 21. Информационные свойства изображений.
- 22. Приборы с зарядовой связью (ПЗС) как многоэлементные фотоприемники.
- 23. Фотопроцессы в структурах типа «металл–диэлектрик–полупроводник» «металл–окисел–полупроводник» (МДП– и МОП–структурах).
- 24. Устройство фотоприемника на основе МОП–структур и методы организации переноса информационных зарядов
- 25. Параметры и характеристики приборов на основе ПЗС-структур
- 26. Спектральная чувствительность фотоприемников на основе МОП-структур.

- 27. Линейные и матричные фотоприемники на основе МОП-структур.
- 28. Координатно-чувствительные приемники инфракрасного излучения.
- 29. Многоцветные фотоприемные матрицы.
- 30. Сравнительные характеристики твердотельных и электровакуумных приемников изображений
- 31. Фотоприемники на основе низкоразмерных структур.
- 32. «Лупа» времени.
- 33. Электронно-оптический преобразователь со щелевой разверткой.
- 34. Регистрация пико— и фемтосекундных импульсов ионизирующих излучений.
- 35. Тепловидение.
- 36. Передающие и приемные устройства современных цифровых фотоаппаратов и видеокамер.
- 37. Применение элекронно-оптических преобразователей в ядерной физике.
- 38. Применение элекронно—оптических преобразователей при изучении развития газового разряда высокого давления.
- 39. Инфракрасная термография.
- 40. Приборы ночного видения. Устройство, параметры, тенденции развития.
- 41. Оптико-электронные системы в лазерной интерферометрии.
- 42. Оптико—электронные системы для экологического мониторинга окружающей среды.
- 43. Оптико-электронные системы контроля космического пространства.
- 44. Оптико-электронные системы контроля поверхности Земли.
- 45. Оптико-электронные системы в интерферометрических измерительных комплексах.

Типовые задания для самостоятельной работы

- 1. Оптические системы.
- 2. Источники и приемники электромагнитного излучения оптического диапазона.
- 3. Конструкции фотоэлементов, их характеристики и параметры.
- 4. Внутренний фотоэффект и фотопроводимость твердых тел.
- 5. Информационные свойства изображений.
- 6. Приборы с зарядовой связью (ПЗС) как многоэлементные фотоприемники.
- 7. Фотопроцессы в структурах типа «металл-диэлектрик-полупроводник» «металл-окисел-полупроводник» (МДП- и МОП-структурах).
- 8. Устройство фотоприемника на основе МОП-структур и организация переноса информационного заряда.
- 9. Элекронно-оптические преобразователи инфракрасного и рентгеновского излучений в видимое.
- 10. Временное разрешение изображений.
- 11. Регистрация пико- и фемтосекундных световых импульсов.
- 12. Оптико-электронные системы: применение в научных исследованиях, промышленности и военном деле.

- 13. Оптико-электронные системы для экологического мониторинга окружающей среды.
- 14. Оптико-электронные системы космического контроля и космических исследований.
- 15. Тепловидение.

Темы практических занятий

№ п/п	№ раздела дисциплины	Темы работы	Трудоемкость, час
1	3	Изучение быстродействия вакуумных и твердотельных фотоприемников оптического излучения	4
2	3	Изучение принципа действия и световых характеристик ПЗС-матрицы	4
3	4	Изучение принципа действия и пространственного разрешения газоразрядно—люминесцентного преобразователя рентгеновского излучения	4
4	5	Изучение световых и временных характеристик фотоэлектронного умножителя	4

Примеры задач

К практическим занятиям, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями.

1. Спектральная характеристика приёмника приведена на рис. 1. Определить силу фототока, вырабатываемого фотоприёмником, при попадании на его светочувствительную поверхность излучения от точечного источника с силой излучения $Iv=15~Br\cdot cp^{-1}$ и длиной волны 1,06 мкм. Угол падения лучей на поверхность приемника $\epsilon=0$. Источник расположен от приёмника на расстоянии r=100~m. Площадь светочувствительной поверхности фотоприёмника $Qnp=100~m^2$. Максимальное значение спектральной чувствительности приемника $Smax=10~mA\cdot Br^{-1}$.

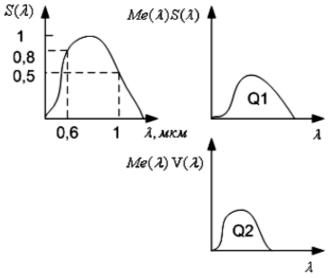


Рис. 1. Спектральные характеристики приёмника

2. На расстоянии r=6 м от приёмника расположен точечный монохроматический источник, излучающий на длине волны 0,6 мкм. Площадь светочувствительной поверхности приёмника $Qnp = 9 \text{ мm}^2$, угол падения лучей на приёмник $\varepsilon=0$. Максимальная спектральная чувствительность приемника $Smax = 2 \text{ мA·Br}^{-1}$, спектральная характеристика приведена на рис. 1. Определить силу излучения источника, если реакция приёмника на излучение источника I=0,05 мкA.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО ФГБОУ ВО "РГРТУ", РГРТУ, Круглов Сергей Александрович, Заведующий кафедрой ПЭЛ

01.09.25 19:51 (MSK)

Простая подпись