МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Микро- и наноэлектроника»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.06 «Методы исследования наноматериалов, микро- и наносистем»

Направление подготовки 03.03.01 «Прикладные математика и физика»

Направленность (профиль) подготовки Электроника, квантовые системы и нанотехнологии

> Уровень подготовки Академический бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – очная

1. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

- ПК-3.3 испытывает изделия "система в корпусе" на устойчивость к внешним воздействующим факторам и на соответствие требованиям технического задания;
- ПК-5.1 проводит предварительные измерения опытных образцов изделий "система в корпусе";
- ПК-5.2 обрабатывает результаты измерений и испытаний опытных образцов изделий "система в корпусе"

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (зачтено, незачтено).

Паспорт фонда оценочных средств по дисциплине

№ п/ п	№ раздел а	Контролируем ые разделы (темы) дисциплины (результаты по разделам)	Код контрол и- руемой компете н-ции (или её части)	Этап формирования контролируемой компетенции (или её части)	Вид, метод, форма оценочного средства
1	1	Введение	ПК-3.3, ПК-5.1	Лекционные занятия обучающихся в течение учебного семестра	Зачет

2	2	Методы измерения электрофизическ их параметров полупроводников	ПК-3.3, ПК-5.1, ПК-5.2	Лекционные, лабораторные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, ответы на тестовые задания, отчеты по лабораторным работам с периодичностью 1 раз в две недели, зачет
3	3	Методы исследования энергетического спектра электронных состояний в полупроводниковых микро- и наноструктурах	ПК-3.3, ПК-5.1, ПК-5.2	Лекционные, лабораторные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, ответы на тестовые задания, отчеты по лабораторным работам с периодичностью 1 раз в две недели, зачет
4	4	Прецизионная профилометрия поверхности и измерение геометрических размеров в структурах электроники	ПК-3.3, ПК-5.1, ПК-5.2	Лекционные, лабораторные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, ответы на тестовые задания, отчеты по лабораторным работам с периодичностью 1 раз в две недели, зачет
5	5	Методы измерения состава твердых тел и концентрационн ых профилей по основным и примесным компонентам	ПК-3.3, ПК-5.1, ПК-5.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, ответы на тестовые задания, зачет
6	6	Дифракционные методы анализа кристаллической структуры	ПК-3.3, ПК-5.1, ПК-5.2	Лекционные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, ответы на тестовые задания, зачет

2 Формы текущего контроля

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях, по результатам выполнения обучающимися индивидуальных заданий, проверки качества конспектов лекций и иных материалов.

Текущий контроль по дисциплине «Методы исследования наноматериалов, микро- и наносистем» проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно и на лабораторных занятиях, а также экспресс — опросов и заданий по лекционным материалам и лабораторным работам. Учебные пособия, рекомендуемые для самостоятельной работы и подготовки к лабораторным занятиям обучающихся по дисциплине «Методы исследования наноматериалов, микро- и наносистем», содержат необходимый теоретический материал. Результаты самостоятельной работы контролируются преподавателем.

3 Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является зачет. Форма проведения зачета — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

4. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, шкал оценивания

Оценка степени формирования указанных выше (п. 1) контролируемых компетенций у обучающихся на различных этапах их формирования проводится преподавателем во время лекций, консультаций и лабораторных занятий по шкале оценок «зачтено» - «не зачтено». Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, и на лабораторных занятиях, а также экспресс – опросов и заданий по лекционным материалам и лабораторным работам. Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий и самостоятельной работы оценивается по критериям шкалы оценок - «зачтено» – «не зачтено». Освоение дисциплины И достаточно высокая степень формирования контролируемых компетенций обучающегося (своевременные выполнение и защита отчетов по лабораторным работам служат) основанием для допуска обучающегося к этапу промежуточной аттестации – зачету.

Уровень теоретической подготовки студента определяется составом и степенью формирования приобретенных компетенций, усвоенных теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач целенаправленного применения различных групп материалов в электронной технике.

Целью проведения промежуточной аттестации (зачета) является проверка общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Методы исследования наноматериалов, микро- и наносистем».

Зачет организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, является утвержденный экзаменационный билет, содержание которого определяется ОПОП и настоящей рабочей программой. Экзаменационный билет включает в себя, как правило, два вопроса, которые относятся к указанным выше теоретическим разделам дисциплины.

Оценке на заключительной стадии зачета подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора.

Применяются следующие критерии оценивания компетенций (результатов):

- -уровень усвоения материала, предусмотренного программой;
- -умение анализировать материал, устанавливать причинно-следственные связи;
 - полнота, аргументированность, убежденность ответов на вопросы;
- качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

Применяется шкала оценок - «зачтено» — «не зачтено»: оценка «зачтено», соответствует шкале "компетенции студента полностью или в основном соответствуют требованиям $\Phi\Gamma$ OC BO", «не зачтено» " компетенции студента не соответствуют требованиям $\Phi\Gamma$ OC BO".

5. Критерии оценивания промежуточной аттестации

Шкала оценивания	Критерии оценивания		
«зачтено»	студент должен: продемонстрировать достаточно полное знание		
	материала; продемонстрировать знание основных теоретических		
	понятий; достаточно последовательно, грамотно и логически		
	стройно излагать материал; уметь сделать достаточно		
	обоснованные выводы по излагаемому материалу; ответить на		
	все вопросы билета; продемонстрировать умение правильно		
	выполнять практические задания, предусмотренные программой,		
	при этом возможно допустить непринципиальные ошибки.		
«незачтено»	ставится в случае: незнания значительной части программного		
	материала; не владения понятийным аппаратом дисциплины;		
	существенных ошибок при изложении учебного материала;		
	неумения строить ответ в соответствии со структурой		
	излагаемого вопроса; неумения делать выводы по излагаемому		
	материалу. Как правило, оценка «неудовлетворительно» ставится		
	студентам, которые не могут продолжить обучение по		
	образовательной программе без дополнительных занятий по		
	соответствующей дисциплине (формирования и развития		
	компетенций, закрепленных за данной дисциплиной). Оценка		
	«неудовлетворительно» выставляется также, если студент после		
	начала экзамена отказался его сдавать или нарушил правила		

сдачи экзамена (списывал, подсказывал, обманом пытался получить более высокую оценку и т.д.).

6 Типовые контрольные вопросы по дисциплине

- 1. Основные методы измерения электрофизических параметров полупроводниковых структур: удельного сопротивления, концентрации и подвижности носителей заряда, измерение характеристических параметров неравновесных носителей заряда.
- 2. Двухзондовый, четырехзондовый, трехзондовый методы определения удельного сопротивления полупроводниковых слоев.
 - 3. Метод, основанный на измерении сопротивления растекания.
- 4. Метод Ван-дер-Пау. Пятизондовый метод. Метод встречных зондов. Однозондовый метод.
- 5. Бесконтактные емкостной и индуктивный методы измерения сопротивления. Измерения удельного сопротивления сильнолегированных полупроводников методом Q-метра.
 - 6. СВЧ-методы измерения удельного сопротивления.
 - 7. Метод вольт-фарадных характеристик.
- 8. Электрические термостимулированные методы определения параметров полупроводниковых материалов.
- 9. Определение ширины запрещенной зоны по температурной зависимости проводимости. Определение отношения подвижностей свободных носителей заряда методом экстраполяции проводимости.
- 10. Определение концентрации доноров и акцепторов по температурной зависимости концентрации свободных носителей заряда.
- 11. Определение параметров полупроводниковых материалов с использованием эффекта Холла. Физические основы метода Холла и влияние паразитных эффектов на точность измерений. Методы устранения паразитных эффектов.
- 12. Влияние формы образцов и поверхностной проводимости на холловские измерения. Метод Ван-дер-Пау для измерения концентрации и подвижности. Измерение эффекта Холла на переменном токе (переменном магнитном поле). Требования к контактам, методы их изготовления, проверка омичности.
- 13. Определение ширины запрещенной зоны методом эффекта Холла. Определение концентрации доноров и акцепторов по температурной зависимости подвижности. Определение отношения подвижностей носителей заряда в полупроводнике р-типа.
- 14. Эффект Холла на образцах с неоднородным распределением примеси. Измерение подвижности по магнитосопротивлению.
 - 15. Квантовый эффект Холла.
- 16. Методы измерения параметров неравновесных носителей заряда. Поглощение света в полупроводниках. Определение параметров полупроводников (µ, т) путем измерения стационарной фотопроводимости.

- 17. Физические основы релаксационной спектроскопии глубоких уровней (РСГУ). Влияние глубоких центров на свойства полупроводниковых микроструктур.
 - 18. Основные виды РСГУ: емкостная и токовая РСГУ.
- 19. Методы исследования микроструктуры точечных дефектов и процессов эмиссии носителей заряда в полупроводниковых микро- и наноструктурах.
 - 20. Спектроскопия адмиттанса.
 - 21. Спектроскопия низкочастотных шумов.
- 22. Прецизионная профилометрия поверхности и измерение геометрических размеров в структурах электроники.
 - 23. Оптическая микроскопия.
 - 24. Растровая электронная микроскопия.
- 25. Определение толщины эпитаксиального слоя методом инфракрасной интерференционометрии.
 - 26. Инфракрасная эллипсометрия.
 - 27. Просвечивающая электронная микроскопия.
 - 28. Топографирование.
- 29. Сканирующая туннельная микроскопия, атомно-силовая микроскопия и ее разновидности.
- 30. Основы методов электронной, ионной спектроскопии и ядернофизического анализа.
 - 31. Оже-электронная спектроскопия.
 - 32. Масс-спектрометрия вторичных ионов, нейтральных частиц.
 - 33. Нейтронно-активационный анализ.
 - 34. Поглощение рентгеновского излучения.
 - 35. Рентгеновская дифракция.
 - 36. Дифракция электронов низких энергий.

Типовые задания в рамках самостоятельной работы студентов для укрепления теоретических знаний, развития умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- Методы измерения электрофизических параметров полупроводников.
- Методы исследования энергетического спектра электронных состояний в полупроводниковых микро- и наноструктурах.
- Прецизионная профилометрия поверхности и измерение геометрических размеров в структурах электроники.
- Методы измерения состава твердых тел и концентрационных профилей по основным и примесным компонентам.
- Дифракционные методы анализа кристаллической структуры.

Примеры заданий и контрольных вопросов к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями (для всех видов проводимых занятий или

самостоятельных работ необходимо предусмотреть материалы для проверки знаний, умений и владений навыками).

ЛАБОРАТОРНАЯ РАБОТА №2

ИССЛЕДОВАНИЕ ВОЛЬТ-ФАРАДНЫХ ХАРАТЕРИСТИК ДИОДОВ ШОТТКИ

Вопросы для подготовки к защите лабораторной работы №2

- 1. Объясните возникновение обедненного слоя на границе p-n перехода.
- 2. При каких условиях образуется выпрямляющий контакт металл-полупроводник?
- 3. Что такое барьерная емкость p-n перехода и как она зависит от приложенного напряжения?
- 4. Нарисуйте зависимость $1/C^2 = f(U_{\text{обр}})$ для диода Шоттки на однородно легированном полупроводнике.
- 5. Нарисуйте зависимость $1/C^2 = f(U_{\text{обр}})$ для диода Шоттки на полупроводнике с линейным увеличением (уменьшением) концентрации примеси.
- 6. От чего зависит высота потенциального барьера диода Шоттки?
- 7. Как определить высоту потенциального барьера диода Шоттки по его C-V характеристики?
- 8. Какие требования предъявляются к полупроводниковым структурам, чтобы их можно было исследовать методом вольт-фарадных характеристик?
- 9. Чем ограничена возможность измерения профиля концентрации примеси при ее резком изменении?
- 10. Объясните назначение блоков структурной схемы установки для исследования ВФХ.
- 11. Можно ли измерять профиль концентрации примеси в p-n переходах, используя методику, описанную в данной работе?
- 12. Что такое «квантовая яма»?
- 13. Какой будет зависимость емкости от обратного напряжения в случае плавного p-n перехода?
- 14. Что такое адмиттанс, иммитанс, импеданс?

Полный перечень **заданий** и **вопросов** к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями, приведен в соответствующих методических указаниях.

- 1. Методы исследования материалов и структур электроники. Методические указания к лабораторным работам / Сост.: В.Г. Литвинов, С.И. Мальченко, Н.Б. Рыбин, А.В. Ермачихин. Рязан. гос. радиотехн. университет.- Рязань, 2012.- 40 с.
- 2. Квантовая Физика. Методические указания к лабораторным работам/ Сост.: В.Г. Литвинов, Н.Б. Рыбин, Н.В. Рыбина, А.В. Ермачихин. Рязан. гос. радиотехн. университет.- Рязань, 2014.- 24 с.
- 3. Зондовые методы исследования материалов и структур электроники. Методические указания к лабораторным работам / Сост.: А.П. Авачев, В.Г. Литвинов, К.В. Митрофанов, В.Г. Мишустин. Рязан. гос. радиотехн. университет.- Рязань, 2011.- 48 с.

4. Методические рекомендации по подготовке студентов к текущему и промежуточному контролю освоения компетенций; сост.: Т.А.Холомина, Е.Н.Евдокимова / Рязан. гос. радиотехн. ун-т.- Рязань, 2016. 16 с.

Типовые тестовые задания для укрепления и проверки теоретических знаний, развития умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

Тест 1

- 1. Четырехзондовый метод используется для:
 - 1. измерения подвижности свободных носителей заряда;
 - 2. изучения химического состава твердых тел;
 - 3. измерения удельного сопротивления полупроводников;
 - 4. измерения профиля концентрации свободных носителей заряда в полупроводниках.
- 2. Для контроля шероховатости поверхности твердых тел используется:
 - 1. атомно-силовая микроскопия;
 - 2. инфракрасная интерференциометрия
 - 3. вторичная ионная масс-спектрометрия;
 - 4. рентгеновская дифрактометрия.
- 3. Подвижность носителей заряда в полупроводниках определяется:
 - 1. методом измерения ЭДС Эттингсгауза;
 - 2. методом Ван дер Пау с использованием магнитного поля;
 - 3. методом вольт-фарадных характеристик;
 - 4. методом вольт-амперных характеристик.
- 4. Толщина полупроводниковой эпитаксиальной пленки, выращенной на полупроводниковой подложке, может быть измерена:
 - 1. методом интерференционной эллипсометрии;
 - 2. методом встречных зондов;
 - 3. пятизондовым методом;
 - 4. всеми перечисленными методами.
- 5. Метод релаксационной спектроскопии глубоких уровней применяется для:
 - 1. изучения химического состава твердых тел;
 - 2. измерения профиля концентрации свободных носителей заряда в полупроводниковых барьерных структурах;
 - 3. измерения ширины запрещенной зоны полупроводников;
 - 4. измерения сечения захвата глубоких центров.
- 6. В основе зондовых методов измерения удельного сопротивления полупроводников лежит предположение:
 - 1. о формировании омического контакта зонд-полупроводник;
 - 2. об ионной проводимости твердых тел;
 - 3. об отсутствии запрещенной зоны в металлах;
 - 4. о пространственном ограничении объемного заряда в полупроводниковых барьерных структурах.
- 7. Однозондовый метод применяется для:
 - 1. изучения химического состава полупроводниковых слитков;
 - 2. измерения однородности распределения удельного сопротивления вдоль полупроводниковых слитков;
 - 3. измерения дрейфовой подвижности носителей заряда в полупроводниковых слитках;
 - 4. измерения линейных размеров полупроводниковых слитков.
- 8. При изучении эффекта Холла в полупроводниках необходимо учитывать:
 - 1. эффект Эттингсгаузена;

- 2. эффект Риге-Ледука;
- 3. эффект Нернста;
- 4. все перечисленные эффекты.
- 9. Метод масс-спектрометрии вторичных ионов используется для:
 - 1. измерения концентрации глубоких центров;
 - 2. измерения подвижности свободных носителей заряда;
 - 3. измерения толщины эпитаксиальных слоев;
 - 4. измерения профиля распределения элементного состава материалов электронной техники.
- 10. Особенности рельефа поверхности непроводящих твердых тел могут быть детально исследованы:
 - 1. методом сканирующей туннельной микроскопии;
 - 2. методом атомно-силовой микроскопии;
 - 3. методом растровой электронной микроскопии;
 - 4. методом оже-электронной спектроскопии.

Тест 2

- 1. Метод встречных зондов используется для:
 - 1. измерения подвижности свободных носителей заряда;
 - 2. изучения химического состава твердых тел;
 - 3. измерения удельного сопротивления в полупроводниковых n+-n и p+-р структурах;
 - 4. измерения удельного сопротивления в полупроводниковых n+-p и p+-n структурах.
- 2. Для контроля распределения поверхностной проводимости твердых тел используется:
 - 1. кельвин-зондовая микроскопия;
 - 2. инфракрасная интерференциометрия
 - 3. вторичная ионная масс-спектрометрия;
 - 4. атомно-силовая микроскопия.
- 3. Подвижность носителей заряда в полупроводниках определяется:
 - 1. методом измерения ЭДС неэвипотенциальности холловских электродов;
 - 2. методом измерения ЭДС Холла;
 - 3. методом спектроскопии полной проводимости;
 - 4. методом встречных зондов.
- 4. Толщина полупроводниковой эпитаксиальной пленки, выращенной на полупроводниковой подложке, может быть измерена:
 - 1. методом измерения коэффициента отражения;
 - 2. методом растровой электронной микроскопии;
 - 3. однозондовым методом;
 - 4. ни одним из перечисленных методов.
- 5. Метод релаксационной спектроскопии глубоких уровней применяется для:
 - 1. изучения химического состава твердых тел;
 - 2. измерения профиля концентрации дефектов с глубокими уровнями в полупроводниковых барьерных структурах;
 - 3. измерения ширины запрещенной зоны полупроводников;
 - 4. измерения шероховатости поверхности.
- 6. В основе оптических методов измерения концентрации свободных носителей заряда в полупроводниках лежит явление:
 - 1. плазменного резонанса;
 - 2. поворота плоскости поляризации света, проходящего через полупроводниковую пластину в магнитном поле;
 - 3. все перечисленные явления.
- 7. Пятизондовый метод применяется для:
 - 1. измерения удельного сопротивления полупроводниковой тонкой пленки;
 - 2. измерения толщины полупроводниковой пленки;

- 3. всех перечисленных параметров.
- 8. При изучении эффекта Холла в полупроводниках необходимо учитывать:
 - 1. фото-ЭДС;
 - 2. эффект Пельтье;
 - 3. ЭДС неэквипотенциальности холловских электродов;
 - 4. все перечисленные факторы.
- 9. Метод масс-спектрометрии вторичных нейтральных частиц используется для:
 - 1. измерения концентрации глубоких центров;
 - 2. измерения подвижности свободных носителей заряда;
 - 3. измерения толщины эпитаксиальных слоев;
 - 4. измерения профиля распределения элементного состава материалов электронной техники.
- 10. Параметры кристаллической структуры твердых тел могут быть детально исследованы:
 - 1. методом сканирующей туннельной микроскопии;
 - 2. методом атомно-силовой микроскопии;
 - 3. методом растровой электронной микроскопии;
 - 4. методом рентгеновской дифрактометрии.

Оценочные материалы входят в состав рабочей программы дисциплины «Методы исследования наноматериалов, микро- и наносистем (Б1.В.06)», направление подготовки — 03.03.01 «Прикладные математика и физика», ОПОП «Электроника, квантовые системы и нанотехнологии».

Составил

к.ф.-м.н., доцент кафедры микро- и наноэлектроники

Литвинов В.Г.

Зав. кафедрой микро- и наноэлектроники д.ф.-м.н., доцент

Литвинов В.Г.

Оператор ЭДО ООО "Компания "Тензор"

Простая подпись

18.07.25 17:21 (MSK)

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Литвинов Владимир Георгиевич, Заведующий кафедрой МНЭЛ