МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Микро- и наноэлектроника»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.ДВ.05.02 «Интеллектуальные адаптивные материалы»

Направление подготовки 03.03.01 «Прикладные математика и физика»

Направленность (профиль) подготовки Электроника, квантовые системы и нанотехнологии

> Уровень подготовки Академический бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – очная

Рязань 2025 г.

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

ПК-1.1 - проводит моделирование и исследования функциональных, статических, динамических, временных, частотных характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения;

ПК-2.1 - анализирует научные данные, результаты экспериментов и наблюдений.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и самостоятельных работах. При оценивании результатов освоения практических занятий и самостоятельной работы применяется шкала оценки «зачтено – не зачтено». Количество практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой. Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением теоретического зачета. Форма проведения зачета — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый должен составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки, схемы и т.п.

Паспорт оценочных материалов по дисциплине (модулю)

No	Контролируемые разделы (темы)	Код контролируемой	Вид, метод, форма
П	дисциплины	компетенции	оценочного
/		(или её части)	мероприятия
П			
1	2	3	4
1	Классификация интеллектуальных	ПК-1.1, ПК-2.1	практические
	адаптивных материалов		занятия, зачет
2	Активные диэлектрики	ПК-1.1, ПК-2.1	практические
			занятия, зачет
3	Магнитные материалы	ПК-1.1, ПК-2.1	практические
			занятия, зачет
4	Жидкости	ПК-1.1, ПК-2.1	практические
			занятия, зачет
5	Неупорядоченные материалы	ПК-1.1, ПК-2.1	практические
			занятия, зачет

6	Биополимеры и живая материя	ПК-1.1, ПК-2.1	практические
			занятия, зачет
7	Наноматериалы и нанотехнологии	ПК-1.1, ПК-2.1	практические
			занятия, зачет

Формы текущего контроля

Текущий контроль по дисциплине «Интеллектуальные адаптивные материалы» проводится в виде экспресс — опросов и заданий по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно и на практических занятиях. Учебные пособия по дисциплине «Интеллектуальные адаптивные материалы», рекомендуемые для самостоятельной работы обучающихся, содержат необходимый теоретический материал и вопросы по каждому из разделов дисциплины. Результаты ответов на вопросы экспресс — опросов контролируются преподавателем.

Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является теоретический зачет. К зачету допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения зачета – устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Критерии оценки компетенций обучающихся и шкалы оценивания

Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах практических занятий, а также самостоятельной работы оценивается по критериям шкалы оценок: «зачтено» — «не зачтено». Освоение материала дисциплины и контролируемых компетенций обучающегося служит основанием для допуска обучающегося к этапу промежуточной аттестации — теоретическому зачету.

Целью проведения промежуточной аттестации (зачета) является проверка общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Интеллектуальные адаптивные материалы».

Уровень теоретической подготовки определяется составом приобретенных компетенций, усвоенных им теоретических знаний и методов, а также умением осознанно, эффективно использовать их при решении задач целенаправленного применения интеллектуальных адаптивных материалов для изделий современной электроники.

Теоретический зачет организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, являются экзаменационный билет, содержание которого определяется ОПОП и Рабочей программой. Экзаменационный билет включает в себя, как правило, два вопроса, один из которых относятся к указанным выше теоретическим разделам дисциплины и один – практическому применению неупорядоченных полупроводников в электронной технике.

Оценке на заключительной стадии теоретического зачета подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора по критериям шкалы оценок: «зачтено» – «не зачтено».

Применяются следующие критерии оценивания компетенций (результатов):

- уровень усвоения материала, предусмотренного программой;
- умение анализировать материал, устанавливать причинно-следственные связи;
- полнота, аргументированность, убежденность ответов на вопросы;
- качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

Оценка «Зачтено» выставляется обучающемуся, который показывает полные или

достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов); правильно, аргументировано отвечает на все вопросы, с приведением примеров; владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данной дисциплины, других изучаемых предметов; делает несущественные ошибки в ответах на дополнительные вопросы.

Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной работы, систематическая активная работа на практических занятиях.

Оценка «**Не зачтено**» выставляется обучающемуся, который демонстрирует отсутствие знаний значительной части программного материала дисциплины (не справился с 50% вопросов и заданий при ответе на вопросы билета), в ответах на дополнительные вопросы допускает существенные и грубые ошибки. Целостного представления о взаимосвязях элементов дисциплины «Интеллектуальные адаптивные материалы» и использования предметной терминологии у обучающегося нет.

Типовые контрольные темы практических занятий и вопросы по дисциплине «Интеллектуальные адаптивные материалы»

Примерные темы практических занятий

№	Наименование темы	
1	Классификация интеллектуальных адаптивных материалов	
2	Активные диэлектрики. Пьезоэлекетрики	
3	Активные диэлектрики. Пироэлектрики. Электреты	
4	Магнитные материалы	
5	Неупорядоченные материалы	
6	Биополимеры и живая материя	
7	Наноматериалы и нанотехнологии. Квантовые эффекты. Наночастицы и нанопорошки.	
	Фуллерены и их производные, нанотрубки. Нанокомпозиционные, нанопористые и функциональные материалы. Материалы со специальными механическими свойствами	
8	Наноматериалы и нанотехнологии. Зондовые нанотехнологии. Нанолитография, наноимпритинг. Перспективы и тенденции разработки современных технологий и материалов	

Примеры типовых тестовых заданий к практическим занятиям по дисциплине и для самостоятельной работы

Тема: Поляризация диэлектриков

- 1. Поляризацией называют состояние диэлектрика, характеризующееся:
- наличием электрического момента у любого элемента его объема;
- наличием электрического момента у некоторых элементов его объема;
- наличием магнитного момента у любого элемента его объема;
- наличием магнитного момента у некоторых элементов его объема.
- 2. Поляризация это:
- ограниченное смещение свободных зарядов или ориентация дипольных моментов под действием внешнего электрического поля;
- ограниченное смещение связанных зарядов или ориентация дипольных моментов под действием внешнего электрического поля;
- хаотическое тепловое движение свободных зарядов под действием внешнего электрического поля;
- хаотическое тепловое движение связанных зарядов под действием внешнего электрического поля.
 - 3. Диполь это:

- система одноименных подвижных зарядов;
- система разноименных подвижных зарядов;
- система одноименных связанных зарядов;
- система разноименных связанных зарядов.
- 4. Дипольный момент это:
- векторная физическая величина, равная частному заряда диполя на его плечо $\vec{p} = q/1_{\text{[K}\pi/\text{M}]};$
- скалярная физическая величина, равная частному заряда диполя на его плечо $p=q/1_{\text{[K}\pi/\text{M}]};$
- векторная физическая величина, равная произведению заряда диполя на его плечо $\vec{p} = q \times 1$ [Кл·м];
- скалярная физическая величина, равная произведению заряда диполя на его плечо $p=q\times 1$ [K $_{\Pi^*M}$].
 - 5. Поляризованностью Р диэлектрика называется:
- скалярная физическая величина, равная отношению электрического момента dp элемента диэлектрика к объему dV этого элемента P = dp / dV [Kл/м²];
- векторная физическая величина, равная отношению электрического момента dp элемента диэлектрика к объему dV этого элемента $\vec{P} = dp/dV$ [Kл/м²];
- скалярная физическая величина, равная произведению электрического момента dp элемента диэлектрика на объем dV этого элемента $P = dp \times dV$ [Кл·м⁴];
- векторная физическая величина, равная произведению электрического момента dp элемента диэлектрика на объем dV этого элемента $\vec{P} = dp \times dV$ [Кл·м⁴].
 - 6. К мгновенным видам поляризации относится:
 - ионная;
 - ионно-релаксационная;
 - спонтанная;
 - структурная.
 - 7. К видам поляризации, происходящих без потерь энергии, относится:
 - дипольно-релаксационная;
 - электронно-релаксационная;
 - резонансная;
 - электронная.
- 8. Относительная диэлектрическая проницаемость ε характеризует способность различных материалов поляризоваться в электрическом поле, и связана с зарядом Q_0 , который присутствовал бы на электродах конденсатора, если бы их разделял вакуум, и зарядом Q_{π} , который обусловлен поляризацией диэлектрика, следующим соотношением:

$$\epsilon = \frac{Q_0 + Q_{\pi}}{Q_0};$$

$$\epsilon = \frac{Q_0 - Q_{\pi}}{Q_0};$$

$$\epsilon = \frac{Q_0}{Q_0 + Q_{\pi}};$$

$$\epsilon = \frac{Q_0}{Q_0 - Q_{\pi}};$$

9. Электронная поляризация представляет собой:

- упругое смещение и деформацию электронных оболочек атомов и ионов, сопровождаемое потерями энергии;
- упругое смещение и деформацию электронных оболочек атомов и ионов без потери энергии;
- необратимое смещение избыточных электронов, возникающих за счет теплового возбуждения, под действием электрического поля;
- обратимое смещение избыточных электронов, возникающих за счет теплового возбуждения, под действием электрического поля.
- 10. Относительная диэлектрическая проницаемость є диэлектриков с чисто электронной поляризацией связана с их коэффициентом преломления света п следующим соотношением:

```
 \begin{aligned} & \quad \cdot & \epsilon \approx n; \\ & \quad \cdot & \epsilon \approx 1/n; \\ & \quad \cdot & \epsilon \approx n^2; \\ & \quad \cdot & \epsilon \approx 1/n^2 \end{aligned}
```

11. Время установления электронной поляризации составляет:

```
- 10<sup>-6</sup> - 10<sup>-10</sup> c

- 10<sup>-8</sup> - 10<sup>-11</sup> c;

- 10<sup>-13</sup> c;

- 10<sup>-15</sup> c.
```

- 12. Относительная диэлектрическая проницаемость є диэлектриков с чисто электронной поляризацией с ростом температуры в пределах одного агрегатного состояния вещества:
 - монотонно возрастает;
 - монотонно убывает;
 - изменяется скачкообразно;
 - имеет максимумы и минимумы.
 - 13. Ионная поляризация представляет собой:
- упругое смещение связанных ионов на расстояния, меньше периода кристаллической решетки, происходящие без потери энергии;
- упругое смещение связанных ионов на расстояния, меньше периода кристаллической решетки, сопровождаемое потерями энергии;
- упругое смещение связанных ионов на расстояния, равное нескольким периодам кристаллической решетки, сопровождаемое потерями энергии;
- упругое смещение связанных ионов на расстояния, равное нескольким периодам кристаллической решетки, происходящие без потери энергии.
 - 14. Время установления ионной поляризации составляет:

```
- 10<sup>-6</sup> - 10<sup>-10</sup> c

- 10<sup>-8</sup> - 10<sup>-11</sup> c;

- 10<sup>-13</sup> c;

- 10<sup>-15</sup> c.
```

- 15. Относительная диэлектрическая проницаемость є диэлектриков с чисто ионной поляризацией с ростом температуры в большинстве случаев:
 - монотонно возрастает;
 - монотонно убывает;
 - изменяется скачкообразно;
 - имеет максимумы и минимумы.
 - 16. Дипольно-релаксационная поляризация представляет собой:
- полную ориентацию дипольных молекул под действием внутренних процессов в диэлектрике без внешних воздействий;
- частичную ориентацию дипольных молекул под действием внутренних процессов в диэлектрике без внешних воздействий;
 - полную ориентацию дипольных молекул под действием электрического поля;

- частичную ориентацию дипольных молекул под действием электрического поля.
- 17. Время установления дипольно-релаксационной поляризации составляет:
- $-10^{-6} 10^{-10} c;$
- 10⁻⁸ 10⁻¹¹ c;
- 10⁻¹³ c;
- 10⁻¹⁵ c.
- 18. Дипольно-релаксационная поляризация наблюдается в:
- газообразных диэлектриках;
- жидких неполярных диэлектриках;
- жидких полярных диэлектриках;
- твердых неполярных диэлектриках.
- 19. Дипольно-релаксационная поляризация наблюдается в твердых диэлектриках:
- полиэтилен $(C_2H_4)_n$;
- поливинилхлорид $(C_2H_3Cl)_n$;
- политетрафторэтилен $(C_2F_4)_n$;
- полистирол $(C_8H_8)_n$.
- 20. Относительная диэлектрическая проницаемость є диэлектриков с дипольнорелаксационной поляризацией с ростом температуры имеет следующий характер:
 - монотонно возрастает;
 - монотонно убывает;
 - имеет максимум;
 - имеет минимум.
- 21. Относительная диэлектрическая проницаемость є диэлектриков с дипольнорелаксационной поляризацией зависит от параметров окружающей среды:
 - освещенность;
 - влажность;
 - давление;
 - температура.
 - 22. Потери энергии, сопровождающие дипольно-релаксационную поляризацию, обусловлены:
 - кулоновским взаимодействием полярных молекул;
 - хаотическим тепловым движением полярных молекул;
 - силами молекулярного сопротивления повороту полярных молекул;
 - взаимодействием магнитных моментов полярных молекул.
- 23. При дипольно-релаксационной поляризации при снятии электрического поля ориентация полярных молекул со временем ослабевает. Зависимость поляризованности диэлектрика описывается следующей формулой:

```
 \begin{array}{l} - P(t) = P(0) \cdot exp[-t/\tau], \\ - P(t) = P(0) \cdot exp[t/\tau], \\ - P(t) = P(0) \cdot ln[-t/\tau], \\ - P(t) = P(0) \cdot ln[t/\tau]. \end{array}
```

где t – время, прошедшее после снятия электрического поля; τ – время релаксации.

- 24. Электронно-релаксационная поляризация представляет собой:
- упругое смещение и деформацию электронных оболочек атомов и ионов, сопровождаемое потерями энергии;
- упругое смещение и деформацию электронных оболочек атомов и ионов без потери энергии;
- необратимое смещение избыточных электронов, возникающих за счет теплового возбуждения, под действием электрического поля без потери энергии;
- обратимое смещение избыточных электронов, возникающих за счет теплового возбуждения, под действием электрического поля, сопровождаемое потерями энергии.

- 25. Время установления электронно-релаксационной поляризации составляет:
- $-10^{-6} 10^{-10} c$
- 10⁻⁸ 10⁻¹¹ c;
- 10⁻¹³ c;
- 10⁻¹⁵ c.
- 26. Относительная диэлектрическая проницаемость є диэлектриков с электроннорелаксационным механизмом поляризацией при увеличении температуры:
 - монотонно возрастает;
 - монотонно убывает;
 - имеет максимум;
 - имеет минимум.
 - 27. Ионно-релаксационная поляризация представляет собой:
- упругое смещение связанных ионов на расстояния, меньше периода кристаллической решетки, происходящие без потери энергии;
- упругое смещение связанных ионов на расстояния, меньше периода кристаллической решетки, сопровождаемое потерями энергии;
- обратимое смещение слабосвязанных ионов на расстояния, равное нескольким периодам кристаллической решетки, сопровождаемое потерями энергии;
- обратимое смещение слабосвязанных ионов на расстояния, равное нескольким периодам кристаллической решетки, происходящие без потери энергии.
 - 28. Время установления ионно-релаксационной поляризации составляет:
 - $-10^{-6} 10^{-10}$ c
 - 10⁻⁸ 10⁻¹¹ c;
 - -10^{-13} c;
 - 10⁻¹⁵ c.
 - 29. Ионно-релаксационная поляризация наблюдается в:
 - жидких неполярных диэлектриках;
 - жидких полярных диэлектриках;
 - твердых ионных диэлектриках с неплотной упаковкой;
 - твердых линейных полимерах.
- 30. Относительная диэлектрическая проницаемость є диэлектриков с ионнорелаксационным механизмом поляризацией при увеличении температуры:
 - монотонно возрастает;
 - монотонно убывает;
 - имеет максимум;
 - имеет минимум.
- 31. Возникновение внутреннего электрического поля под действием внешнего у диэлектриков с миграционным механизмом поляризация обусловлено:
 - упругим смещением связанных зарядов;
 - упругим смещением свободных зарядов;
- наличием проводящих включений, а также наличием слоев с различной проводимостью;
- ориентацией электрических моментов дипольных молекул под действием внешнего электрического поля.
 - 32. Спонтанная (самопроизвольная) поляризация представляет собой:
- ориентацию электрических моментов доменов из-за хаотического теплового движения;
- ориентацию электрических моментов доменов под действием внутренних процессов в диэлектрике без внешних воздействий;
- ориентацию электрических моментов дипольных молекул под действием внешнего электрического поля;
 - ориентацию электрических моментов дипольных молекул под действием внешнего

магнитного поля.

- 33. Относительная диэлектрическая проницаемость є диэлектриков со спонтанным (самопроизвольным) механизмом поляризацией может достигать значений:
 - 10 50;
 - 100 200;
 - 500 9000;
 - 10000 30000.
- 34. Относительная диэлектрическая проницаемость є диэлектриков со спонтанным (самопроизвольным) механизмом поляризацией при увеличении температуры:
 - монотонно возрастает;
 - монотонно убывает;
 - имеет минимумы и максимумы;
 - изменяется скачкообразно.

Тема: Пьезоэлектрики

- 1. К пьезоэлектрикам относят:
- диэлектрики, которые обладают сильно выраженным пьезоэлектрическим эффектом;
- диэлектрики, которые обладают слабо выраженным пьезоэлектрическим эффектом;
- диэлектрики, у которых изменяется спонтанная поляризация;
- диэлектрики, у которых изменяется спонтанная поляризация при большой наряженности электрического поля.
 - 2. Прямым пьезоэлектрическим эффектом называют:
 - явление поляризации диэлектрика под действием электрического поля;
 - явление поляризации диэлектрика под действием низкой температуры;
 - явление поляризации диэлектрика под действием механических напряжений;
- изменение линейных размеров диэлектрика под действием напряженности электрического поля.
 - 3. Обратным пьезоэлектрическим эффектом называют:
 - необратимое смещение зарядов под действием напряженности электрического поля;
 - смещение электронной орбиты под действием напряженности электрического поля;
 - изменение линейных размеров под действием температуры;
 - изменение линейных размеров под действием напряженности электрического поля.
 - 4.Зависимость обратного пьезоэлектрического эффекта описывается формулой:
 - $\Delta l/l = \delta = Ed$;
 - $\Delta l/l = ln(\delta) = E/d$;
 - $-\Delta l/l = \delta = \exp(E/d);$
 - $-\Delta l \cdot l = \delta = Ed$.
 - 5. Продольным пьезоэлектрическим эффектом называют:
- такой эффект, когда возникновение диполей на противоположных гранях пластинки определяют в противоположном направлении, в котором были приложены механические усилия, а при обратном пьезоэлектрическом эффекте деформацию измеряют в направлении приложенного электрического поля;
- такой эффект, когда возникновение зарядов на противоположных гранях пластинки определяют в том же направлении, в котором были приложены механические усилия, а при обратном пьезоэлектрическом эффекте деформацию измеряют в направлении приложенного электрического поля;
- эффект, в котором возникающие диполи или деформации измеряют в направлении, перпендикулярном направлении механических усилий;
- такой эффект, когда возникновение заряда на гранях пластинки определяют в одном направлении, в котором были приложены механические усилия, а при обратном пьезоэлектрическом эффекте деформацию измеряют в противоположном направлении приложенного электрического поля.
 - 6. Уравнения прямого и обратного пьезоэффектов в тензорной форме имеют

следующий вид:

```
- P_i = d_{ij} \cdot \sigma_j, \delta_j = d_{ij}/E_i;
```

-
$$P_i = d_{ij} \cdot \sigma_i$$
, $\delta_i = d_{ij} \cdot E_i$;

-
$$P_i = d_{ij}/\sigma_j$$
, $\delta_j = d_{ij} \cdot E_i$;

$$P_i = d_{ij} \cdot \sigma_i, \ \delta_i = d_{ij} \cdot E_i.$$

- 7. Поперечным пьезоэлектрическим эффектом называют:
- возникающие деформации, при нагревании пьезоэлемента выше точки Кюри;
- возникающие заряды или деформации измеряют в направлении, перпендикулярном направлению механических усилий или электрического поля;
 - возникающие заряды, при нагревании пьезоэлемента чуть ниже точки Кюри;
- возникновение большой напряженности электрического поля при воздействии механических напряжений.
 - 8. Пьезоэффект наблюдается лишь в веществах с:
 - гомеополярной химической связью;
 - молекулярной связью;
 - гетерополярной связью;
 - ковалентной связью.
 - 9. Пьезоэлектриками могут быть только вещества с:
 - низким удельным сопротивлением;
 - в промежуточным сопротивлением между проводником и полупроводником;
 - в промежуточным сопротивлением между полупроводником и диэлектриком;
 - высоким удельным сопротивлением.
 - 10. При какой температуре пропадают пьезоэлектрические свойства β-кварца:
 - 550 °C;
 - 680 °C;
 - 573 °C;
 - 236 °C.
- 11. Пластинки монокристаллического кварца, вырезанные вдоль какой оси не обладают пьезоэлектрическим эффектом:
 - вырезанные перпендикулярно оптической оси Z;
 - вырезанные перпендикулярно механической оси Y;
 - вырезанные параллельно механической оси Y;
 - вырезанные параллельно электрической оси X.
 - 12. Преимуществами кварцевых резонаторов являются:
 - высокая температурная стабильность;
 - малый tgδ и высокая механическая добротность;
 - высокий tgб и малая механическая добротность;
 - большое пробивное напряжение.
- 13. Основным материалом для изготовления пьезокерамических элементов являются твердые растворы:
 - $(C_2F_4)_n$ (политетрафторэтилен);
 - $PbZrO_3 PbTiO_3$ (цирконат-титанат свинца);
 - $Sr_xBa_{1-x}Nb_2O_2$ (ниобад бария-стронция));
 - $(C_2H_4)_n$ полиэтилен.
 - 14.В лучших кристаллах кварца механическая добротность может достигать:
 - -10^9-10^{12} ;
 - $-10^7 10^9$:
 - -10^6-10^7 ;
 - -10^4-10^5 .
- 15. Пластинка монокристаллического кварца, вырезанные вдоль какой оси создает наибольший заряд:
 - вырезанные параллельно электрической оси Х;

- вырезанные перпендикулярно механической оси Y; вырезанные перпендикулярно электрической оси X; вырезанные перпендикулярно оптической оси Z/

Вопросы к теоретическому зачету

	вопросы к теоретическому зачету		
	Тема 1 «Введение		
1.1	Классификация материалов электроники по агрегатному состоянию и структуре		
	Тема 2 «Классификация интеллектуальных адаптивных материалов»		
2.1	Основные типы химических связей в материалах электроники		
2.2	Классификация интеллектуальных материалов электроники по электрическим и		
	оптическим свойствам		
	Тема 3 «Активные диэлектрики»		
3.1	Интеллектуальные материалы. Диэлектрики. Виды активных диэлектриков		
3.2	Поляризация. Спонтанная поляризация. Сегнетоэлектрики.		
3.3	Доменная структура сегнетоэлектриков. Диэлектрический гистерезис.		
3.4	Виды диэлектрической проницаемости сегнетоэлектриков		
3.5	Классификация сегнетоэлектриков. Механизм спонтанной поляризации		
3.6	Доменная структура сегнетоэлектриков. Антисегнетоэлектрики		
3.7	Применение сегнетоэлектриков. Виды сегнетокерамики		
3.8	Применение сегнетоэлектриков. Вариконды. Диэлектрические усилители		
3.9	Применение сегнетоэлектриков в качестве элементов памяти. Структура КМОП КНИ с		
	сегнетоэлектрическим конденсатором. Структура FRAM ячейки с		
	сегнетоэлектрическим конденсатором		
3.10	Применение сегнето- и антисегнетоэлектриков для модуляции и преобразования ла-		
	зерного излучения. Электрооптический эффект		
	Пьезоэлектрики. Прямой и обратный пьезоэффект. Продольный и поперечный пье-		
	зоэффект		
3.12	Применение пьезоэлектриков. Пьезотрансформаторы. Пьезоэлектрические материалы		
3.13	Пироэлектрики. Первичный и вторичный пироэффект. Применение пироэлектриков		
3.14	Электреты. Термоэлектреты. Фотоэлектреты		
3.15			
	3.15 Применение электретов. Способы получения электретов Тема 4 «Магнитные материалы»		
4.1	Магнитные материалы. Виды магнитных материалов. Намагниченность. Магнитная		
7.1	восприимчивость. Спин электрона. Обменное взаимодействие.		
4.2	Классификация веществ по магнитным свойствам. Диамагнетики, парамагнетики,		
7.2	ферромагнетики, антиферромагнетики, ферримагнетики		
4.3	Природа ферромагнетизма. Энергия обменного взаимодействия.		
4.4	· · · · · · · · ·		
4.5	Доменные структуры ферромагнетиков. Магнитная анизотропия Зависимость магнитных свойств ферромагнетиков от температуры.		
4.6			
4.7	Ферромагнетики в переменных магнитных полях. Виды потерь		
	Комплексная магнитная проницаемость. Высокочастотные потери в ферромагнетиках		
4.8	Поверхностный эффект в ферромагнетиках. Доменные структуры в тонких магнитных		
4.0	пленках		
4.9	Магнитомягкие материалы. НЧ магнитомягкие материалы. Низкокоэрцитивные		
4.10	магнитомягкие сплавы. Аморфные магнитные сплавы		
4.10	Высокочастотные магнитомягкие материалы. Ферриты. Виды ферритов.		
4 1 1	Механизм косвенного обменного взаимодействия		
4.11	Магнитодиэлектрики. Требования к магнитодиэлектрикам.		
4.12	Магнитотвердые материалы. Параметры магнитотвёрдых материалов		
4.13	Природа намагниченного состояния. Классификация магнитотвёрдых материалов		
4.14	Магнитные материалы специального назначения.		

r	Гема 5 «Жидкости»		
5.1	Классификация жидкостей и типов межмолекулярных взаимодействий.		
5.2	Тепловое движение частиц в жидкостях		
5.3	Полимерные жидкости		
5.4	Квантовые жидкости		
5.5	Жидкие кристаллы. Нематики, смектики, холестерики. Термохромный эффект.		
5.6	Электрооптические эффекты в нематических жидких кристаллах. Гомогенная и го-		
	меотропная ориентация молекул. Характеристики нематических жидких кристаллов		
5.7	Конструкция электрооптической ячейки на жидких кристаллах. Динамическое рассе-		
	яние света в жидких кристаллах		
5.8	Полевой электрооптический эффект в ЖК. «Твист»-эффект. Цветные изображения,		
	получаемые с помощью ЖК. ТFT LCD панели.		
r	Тема 6 «Неупорядоченные материалы»		
6.1	Особенности атомной структуры неупорядоченных систем		
6.2	Электронные состояния, оптические свойства и транспорт носителей в		
	неупорядоченных полупроводниках		
6.3	Особенности управления свойствами неупорядоченных полупроводников		
6.4	Технологические методы получения объемных и пленочных неупорядоченных		
	полупроводников		
6.5	Электронные приборы и устройства на основе неупорядоченных полупроводников		
ŗ	Гема 7 «Биополимеры и живая материя»		
7.1	Особое место биополимеров и живой материи среди непериодических систем		
7.2	Основная особенность структурной и функциональной организации живой материи		
7.3	Три основных энергетических состояния активной среды		
r	Гема 8 «Наноматериалы и нанотехнологии»		
8.1	Роль свободных и внутренних поверхностей. Квантовые эффекты.		
8.2	Наночастицы и нанопорошки.		
8.3	Фуллерены и их производные, нанотрубки		
8.4	Нанокомпозиционные, нанопористые и функциональные материалы		
8.5	Материалы со специальными механическими свойствами		
8.6	Текстильные наноматериалы		
8.7	Зондовые нанотехнологии		
8.8	Нанолитография, наноимпритинг		
r	Гема 9 «Заключение»		
9.1	Современные достижения и проблемы в области интеллектуальных адаптивных		
	материалов в электронике		

Составил

к.т.н., доцент кафедры микро- и наноэлектроники

Вишняков Н.В.

Зав. кафедрой микро- и наноэлектроники д.ф.-м.н., доцент

Литвинов В.Г.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ФГБОУ ВО "РГРТУ", РГРТУ, Литвинов Владимир Георгиевич, Заведующий кафедрой МНЭЛ СОГЛАСОВАНО

18.07.25 17:21 (MSK)

Простая подпись