МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«ЭЛЕКТРОННЫЕ УСТРОЙСТВА В ИНЕРЦИАЛЬНЫХ ТЕХНОЛОГИЯХ» Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации. Основная задача – обеспечить оценку уровня сформированности компетенций, приобретаемых обучающимся в ходе изучения дисциплины.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях; по результатам выполнения обучающимися индивидуальных заданий; по результатам проверки качества конспектов лекций и иных материалов.

По итогам курса обучающиеся сдают зачет. Форма проведения очная – устный ответ, по утвержденным билетам, сформулированным с учетом содержания учебной дисциплины.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (зачет, незачет). Оценка неудовлетворительно (незачет) автоматически выставляется в случае, если студент не выполнил в срок, предусмотренный учебным графиком, практические задания и лабораторные работы.

Паспорт фонда оценочных средств по дисциплине

№ п/п	№ раздела	Контролируемые разделы (темы) дисциплины	Код контролируемой	Этап формирования	Вид, метод, форма
		(результаты по	компетенции (или еѐ части)	контролируемой компетенции	оценочного средства
		разделам)	(13.11 ee 14.11)	(или еѐ части)	ередетви
1	1	Предмет и задачи дисциплины «Электронные устройства в инерциальных технологиях».	ПК-4.1, ПК-4.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Ответы на вопросы, результаты решения контрольных заданий, экзамен, курсовой проект
2	2	БИНС с акселерометрами и датчиками угловых скоростей.	ПК-4.1, ПК-4.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Ответы на вопросы, результаты решения контрольных заданий, экзамен, курсовой проект
3	3	БИНС с параметрами Родрига-Гамильтона.	ПК-4.1, ПК-4.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Ответы на вопросы, результаты решения контрольных заданий, экзамен, курсовой проект

4	4	Модель ошибок БИНС.	ПК-4.1, ПК-4.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Ответы на вопросы, результаты решения контрольных заданий, экзамен, курсовой проект
5	5	Комплексные навигационные системы.	ПК-4.1, ПК-4.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Ответы на вопросы, результаты решения контрольных заданий, экзамен, курсовой проект
6	6	Фильтр Калмана в навигационных системах.	ПК-4.1, ПК-4.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Ответы на вопросы, результаты решения контрольных заданий, экзамен, курсовой проект
7	7	Моделирование алгоритмов БИНС.	ПК-4.1, ПК-4.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Ответы на вопросы, результаты решения контрольных заданий, экзамен, курсовой проект
8	8	Принцип построения спутниковых систем навигации.	ПК-4.1, ПК-4.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Ответы на вопросы, результаты решения контрольных заданий, экзамен, курсовой проект
9	9	Астронавигационные системы.	ПК-4.1, ПК-4.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Ответы на вопросы, результаты решения контрольных заданий, экзамен, курсовой проект
10	10	Перспективы развития инерциальных технологий и устройств.	ПК-4.1, ПК-4.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Ответы на вопросы, результаты решения контрольных заданий, экзамен, курсовой проект

Типовые контрольные вопросы к экзамену:

- 1. Роль воздушно-скоростных параметров в процессе управления движением ЛА.
- 2. Системы координат и углы ориентации в воздушном потоке, виды скоростей.
- 3. Устройства измерения первичных параметров для информационного комплекса высотноскоростных параметров.
 - 4. Фильтр Калмана в навигационных системах.
 - 5. Алгоритмы работы информационного комплекса высотно-скоростных параметров.
- 6. Основные источники погрешностей информационного комплекса высотно-скоростных параметров и их математические модели. Стохастическое описание погрешностей.
- 7. Обзорно-сравнительные навигационные системы. Навигационные характеристики местности и технические средства определения местоположения ЛА.
- 8. Обзорно-сравнительные навигационные системы. Оптические, электронно-оптические и телевизионные визиры, радиолокационные станции.
- 9. Основные характеристики обзорно-сравнительных навигационных систем, стохастические модели их погрешностей.
- 10. Основные сведения из астрономии. Системы координат, определяющие положение светил. Измерение времени.
 - 11. Связь координат светил с координатами местоположения ЛА.
 - 12. Астронавигационные системы. Основные типы и схемы пеленгующих устройств.
 - 13. Принципы построения и схема горизонтального астрокомпаса.
- 14. Астроориентатор, основанный на измерениях высот двух светил, его принципиальная схема и алгоритм вычисления координат и курса ЛА.
 - 15. Погрешности астронавигационных систем.
 - 16. Силовые системы стабилизации и их особенности.
 - 17. Индикаторные системы стабилизации и их особенности.
 - 18. Индикаторно-силовые системы стабилизации и их особенности.
 - 19. Принцип интегральной коррекции.
- 20. Принципы построения БИНС. Основное уравнение инерциальной навигации. Применение БИНС на ЛА.
 - 21. Алгоритм и функциональная схема БИНС аналитического типа.
 - 22. Алгоритм и функциональная схема БИНС полуаналитического типа.
- 23. Принцип построения БИНС на примере решения задачи ориентации с помощью уравнения Пуассона.
 - 24. Принципы начальной выставки БИНС.
- 25. Погрешности БИНС. Описание их поведения уравнениями ошибок. Основные особенности их поведения.
 - 26. Принцип построения спутниковых систем навигации.
- 27. Режимы работы и точностные характеристики спутниковых систем. Применение спутниковых систем в навигационных комплексах.
 - 28. Модели БИНС с акселерометрами и датчиками угловых скоростей.

Требования к выполнению курсового проекта

Курсовой проект это форма контроля полученных и усвоенных студентом знаний по профилирующим предметам. Под термином «курсовой проект» в современном учебном

процессе понимается письменная работа, которая выполняется обучающимся на протяжении семестра и содержит технический анализ определенного варианта инженерного решения по заданной в заглавии курсового проекта теме. Каждый курсовой проект строго индивидуален и ориентирован на развитие определенной части профессиональных навыков и умения творчески решать практические задачи. Его обязательной составляющей служит технический проект по заданной теме.

Курсовой проект в обязательном порядке состоит из текстовой и графической части. Текстовая часть пояснительной записки состоит из стандартных разделов: содержание, введение, основная часть, заключение, список литературы. Основная часть содержит теоретические положения и основные расчеты и вычисления и возможно экспериментальные исследования. Текстовую часть курсового проекта можно разделить на два раздела теоретический и расчетный. Помимо текстовой части, курсовой проект обычно включает в себя графическую часть, которая состоит из чертежей, схем и таблиц. Обычно в работу включают от двух до четырех чертежей. Кроме текстов и чертежей в состав курсового проекта могут включаться «материальные результаты» в виде макетов или моделей по итогам проектирования. Однако последнее не является обязательным требованием к курсовому проекту.

Примеры тем курсового проектирования по дисциплине «Инерциальные датчики» (Б1.В.06б):

- 1.Проектирование фильтра Калмана для заданных параметров объекта.
- 2.Моделирование работы элементов и узлов БИНС.
- 3. Разработка элементов электроники инерциальных навигационных систем.

.....

Титульный лист.

Задание на курсовой проект.

Содержание

Введение.

- 1. Теоретическая часть
- -1.1.
- -1.2.
- 2. Расчетная часть
- -2.1.
- -2.2.
- 3. Графическая часть
- -3.1.
- -3.2.

Заключение. (Выводы по результатам проектирования)

Список литературы

Следует отметить, что структура основной части курсового проекта (разделы 1 и 2) и содержание раздела 3 может видоизменяться в зависимости от индивидуальности темы исследования.

Формы текущего контроля

Текущий контроль качества усвоения знаний студентами по дисциплине «Электронные устройства в инерциальных технологиях» проводится в виде опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, и на лабораторных и практических занятиях, а также экспресс — опросов и заданий по лекционным материалам и лабораторным работам. Учебные пособия, рекомендуемые для самостоятельной работы и подготовки к лабораторным занятиям обучающихся по дисциплине «Инерциальные датчики», содержат необходимый теоретический материал в краткой форме.

Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является экзамен. К экзамену допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения экзамена – устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Критерии оценки компетенций обучающихся и шкалы оценивания

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

«Отлично»:

глубокие и твердые знания материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов); полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

«Хорошо»:

достаточно полные и твердые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов); последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов.

«Удовлетворительно»:

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов): понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Неудовлетворительно»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений. Оценка неудовлетворительно автоматически выставляется в случае, если студент не выполнил в срок, предусмотренный учебным графиком, практические задания и лабораторные работы.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Круглов Сергей Александрович, Заведующий кафедрой ПЭЛ

01.09.25 19:50 (MSK)

Простая подпись