МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Ф. УТКИНА

Кафедра «Автоматики и информационных технологий в управлении»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДИСЦИПЛИНЫ

Информационные сети и телекоммуникации

Специальность 12.05.01 «Электронные и оптико-электронные приборы и системы специального назначения»

ОПОП

«Оптико-электронные информационно-измерительные приборы и системы»

Квалификация выпускника – инженер Формы обучения – очная Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена и теоретического зачета.

Форма проведения экзамена — письменный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса и одна задача. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения экзаменационной оценки

Паспорт фонда оценочных средств по дисциплине

№ п/п	Контролируемые разделы дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
	Раздел 1. Общие сведения об	ОПК-3.1	Экзамен
1	информационных сетях		
3	Раздел 2. Передающая среда информационных сетей	ОПК-3.1	Экзамен
3	Раздел 3. Пакеты и методы доступа к передающей среде	ОПК-3.1	Экзамен
4	Раздел 4. Эталонная модель взаимодействия открытых систем	ОПК-3.1	Экзамен
5	Раздел 5. Методы передачи данных на физическом уровне	ОПК-3.1, ОПК-3.2	Отчеты по лабораторным работам Экзамен
6	Раздел 6. Методы передачи данных на канальном уровне	ОПК-3.1, ОПК-3.2	Отчеты по лабораторным работам Экзамен
7	Раздел 7. Методы передачи данных на сетевом уровне	ОПК-3.1, ОПК-3.2	Отчеты по лабораторным работам Экзамен
8	Раздел 9. Стандартные проводные сети	ОПК-3.1	Экзамен
9	Раздел 10. Беспроводные сети	ОПК-3.1	Экзамен

Показатели и критерии обобщенных результатов обучения

Результаты обучения по дисциплине	Показатели оценки результата	Критерии оценки результата
ОПК-3.1 Знание: возможностей и принципов функционирования современных телекоммуникационных систем и тенденции развития и используемых в них информационных технологий.	Ответы на контрольные вопросы	Обучающийся должен продемонстрировать знание способов передачи данных, известных телекоммуникационных технологий и систем передачи информации, показать знание хронологии стандартных телекоммуникационных технологий и тенденций развития в области средств телекоммуникации, достижений в области передачи данных, умение учитывать современные тенденции развития информационных технологий в своей профессиональной деятельности.
Умение: применять полученные знания для оценки характеристик стандартных телекоммуникационных систем и применяемых в них сигналов и способов их преобразования для рационального их использования при разработке и проектировании систем и средств автоматизации и управления оптико-электронных систем.		Обучающийся должен продемонстрировать умение использовать математический аппарат, применяемый для описания способов, процессов, технологий и систем передачи данных, умение оценивать эффективность известных методов и технологий передачи данных.
Владение: информационными технологиями, обеспечивающими соблюдение требований информационной безопасности, при разработке и проектировании систем и средств автоматизации и управления оптико-электронных систем.		Обучающийся должен продемонстрировать владение информационными технологиями, обеспечивающими защиту и достоверность передаваемой информации.
ОПК-3.2 Знание: современных систем математического моделирования устройств и систем телекоммуникации, математические методы анализа результатов имитационного моделирования	Ответы на контрольные вопросы	Обучающийся должен продемонстрировать владение технологиями имитационного моделирования, позволяющими давать адекватную оценку эффективности процессов передачи информации.

систем и процессов в области телекоммуникаций.

Умение: применять свои знания к решению практических задач проектирования систем и средств автоматизации и управления оптических и оптико-электронных приборов и комплексов

Владение: способами поиска, обработки и анализа информации для решения профессиональных задач с соблюдением требований информационной безопасности.

Обучающийся должен продемонстрировать умение проводить исследование методов передачи данных и информационных технологий с помощью специализированных пакетов математического моделирования.

Обучающийся должен продемонстрировать владение информацией о технических возможностях современных информационных технологий.

Критерии оценивания компетенций (результатов)

- 1). Уровень усвоения материала, предусмотренного программой.
- 2). Умение анализировать материал, устанавливать причинно-следственные связи.
- 3). Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4). Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция)
- 5). Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

- 1. «Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.
- 2. «Хорошо» заслуживает студент, обнаруживший полное знание учебно-программного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.
- 3. «Удовлетворительно» заслуживает студент, обнаруживший знания основного учебнопрограммного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как «удовлетворительно» выставляется правило, оценка студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями ДЛЯ ИХ устранения под руководством

- преподавателя.
- 4. «Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей лисциплине.

Типовые контрольные задания или иные материалы

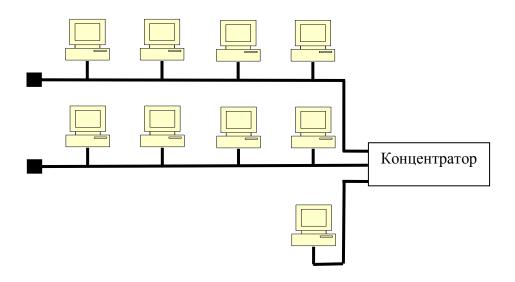
Вопросы к экзамену по дисциплине

- 1. Представление данных для передачи по линиям связи: обобщенная схема двухточечного соединения, понятие дискретного канала, виды преобразования передаваемых данных в сигнал линейное и помехоустойчивое кодирование, модуляция. Наиболее распространенные линейные коды.
- 2. Линейное кодирование. Потенциальные и импульсные коды. Требования к методам линейного кодирования. Линейные коды: NRZ, ASCII достоинства и недостатки.
- 3. Коды AMI, NRZI- достоинства и недостатки.
- 4. Коды RZ, 2B1Q, манчестерский код достоинства и недостатки.
- 5. Методы логического кодирования. Логические коды 4В/5В, 8В/6Т-достоинства и недостатки.
- 6. Скремблирование.
- 7. Линейные Коды B8ZS, HDB3. Сравнение спектров линейных кодов.
- 8. Понятие и назначение модуляции. Базовые виды модуляции: АМ, ЧМ, ФМ.
- 9. Виды многопозиционной модуляции m-FSK, m-PSK, m-APK.
- 10. Скорость передачи информации и скорость модуляции. Скорость модуляции и полоса пропускании канала.
- 11. Цифровые виды модуляции: ИКМ, ADPCM, LPC. Теорема Найквиста-Котельникова. Передача речевых сообщений с помощью ИКМ. Элементарный канал цифровых телефонных сетей. Ошибка квантования.
- 12. Асинхронная и синхронная передача данных.
- 13. Коды в телекоммуникационных системах. Понятие кода. Классификация. Основные параметры. Числовые коды.
- 14. Помехоустойчивое кодирование. Коды с избыточностью. Коэффициент избыточности. Принцип обнаружения ошибок в кодах с избыточностью. Корректирующие коды их классификация.
- 15. Кодовое расстояние. Минимальное кодовое расстояние. Геометрическая интерпретация кодового расстояния. Связь кратности обнаруживаемых и исправляемых кодом ошибок с минимальным кодовым расстоянием.
- 16. Систематические коды. Кодирование и декодирование. Принципы обнаружения и исправления ошибок.
- 17. Матричное построение систематических кодов.
- 18. Построение образующей матрицы для систематического кода.
- 19. Построение проверочной матрицы для систематического кода. Кодирование и декодирование с помощью проверочной матрицы.
- 20. Код Хемминга. Кодирование и декодирование.
- 21. Аппаратная реализация кода Хэмминга. Кодирующее устройство.
- 22. Аппаратная реализация кода Хэмминга. Декодирующее устройство.
- 23. Циклические коды, их математическое описание. Операции над двоичными полиномами. Основное свойство циклического кода. Понятие образующего полинома.

- 24. Построение циклического кода по методу деления на образующий полином. Пример кодирования. Аппаратная и программная реализация кодера циклического кода. Пример построения кодера.
- 25. Декодирование циклического кода в режиме обнаружения ошибок. Пример декодирования. Аппаратная и программная реализация декодера циклического кода, обнаруживающего ошибки. Пример построения декодера.
- 26. Исправление однократных ошибок в циклических кодах. Пример декодирования. Схема CRC-декодера, исправляющего однократные ошибки.
- 27. Аналитическое оценивание эффективности (n,k)-кодов.
- 28. Использование обратной связи для повышения достоверности приема информации. Системы с обратной связью. Решающая и информационная обратная связь.
- 29. Понятие модуляции и демодуляции. Спектры одиночных прямоугольных импульсов и радиоимпульсов, получаемых в результате модуляции.
- 30. Методы передачи данных на канальном уровне. Асинхронные протоколы канального уровня.
- 31. Синхронные символьно-ориентированные и бит-ориентированные протоколы канального уровня.
- 32. Передача данных с установлением и без установления соединения. Методы обнаружения и коррекции ошибок.
- 33. Методы восстановления искаженных и потерянных кадров: метод с простоями, методом «скользящего окна».
- 34. Методы сжатия данных: десятичная упаковка, относительное кодирование, символьное подавление, статистическом кодировании, алгоритм Хаффмана. Стандарт на протоколы сжатия.
- 35. Сети Ethernet, Fast Ethernet, Gigabit Ethernet. Стандарты этих сетей. Топологии сетей Ethernet. Основные характеристики стандарта IEEE 802.3. Линейное кодирование, пакеты и стандарты на среду передачи информации в сети Ethernet. Стандарты на среду передачи информации в Fast Ethernet.
- 36. Сеть Token-Ring. стандарт IEEE 802.5. Топология Token-Ring. Использование концентраторов MAU в сети Token-Ring. Основные технические характеристики Token-Ring. Сравнительная характеристика Token-Ring.
- 37. Среда передачи, сигналы и методы доступа в Token-Ring. Форматы маркера, байта управления доступом и пакетов в Token-Ring. Контроль за целостностью маркера. Активный монитор.
- 38. Сеть Arcnet. Топологии Arcnet: arcnet-BUS, arcnet-STAR. Концентраторы и адаптеры Arcnet. Основные технические характеристики Arcnet. Метод доступа к передающей среде, линейное кодирование, пакеты в сети Arcnet. Достоинства и недостатки Arcnet.
- 39. Сеть FDDI: метод доступа, топология, линейное кодирование, основные технические характеристики. Сравнительная характеристика FDDI. Конфигурация и реконфигурация сети FDDI. Абоненты двух типов в сети FDDI. Концентраторы сети FDDI. Четыре типа портов абонентов сети FDDI.
- 40. Множественная передача маркера в сети FDDI. Приоритеты в сети FDDI. Форматы маркера, байта управления маркера, пакета FDDI.
- 41. Понятие и назначение структуризации сети. Физическая и логическая структуризация сети. Задачи, решаемые с помощью структуризации. Коммуникационное оборудование, используемое для структуризации сети.
- 42. Сетевые службы, их назначение и виды. Качество сетевой службы.
- 43. Источники стандартов в телекоммуникационных системах.
- 44. Понятие ІР-адреса. Назначение ІР-адресов. Классы ІР-адресов. Использование масок в ІР-адресации. Назначение маски подсети.
- 45. Аппаратура 10BASE5, 10BASE2, 10BASE-T, 10BASE-FL.
- 46. Аппаратура 100BASE-TX, 100BASE-T4, 100BASE-FX, 1000BASE-T, 1000BASE-SX и LX, 10GBASE-T.

- 47. Автоматическое определение типа сети.
- 48. Метод управления обменом CSMA/CD. Алгоритм доступа к сети Ethernet и Fast Ethernet.
- 49. Оценка производительности сетей, использующих случайный метод доступа CSMA/CD.
- 50. Сеть 100VG-AnyLAN. Основные технические характеристики сети 100VG-AnyLAN.Структура сети. Метод доступа. Порядок обслуживания запросов абонентов на различных уровнях сети. Процедура подготовки к связи. Кодирование передаваемых данных. Управляющие тональные сигналы.
- 51. Сеть Gigabit Ethernet: метод доступа номенклатура сегментов сети, метод кодирования, минимальная длина пакета, структуры сети.
- 52. Сети с технологией ATM: назначение, скорость передачи данных, используемая для передачи данных среда, линейное кодирование. Принципиальное отличие от других технологий.
- 53. Беспроводные компьютерные сети. Технологии Bluetooth: принцип действия, спецификации, профили.
- 54. Беспроводные компьютерные сети. Технология ZigBee: области применения, особенности, спецификации, профили.

Вопросы к лабораторным занятиям по дисциплине


- 1. Что такое ЛВС и для чего они нужны?
- 2. Какие функции выполняют драйверы?
- 3. Что такое сетевой протокол?
- 4. Дайте понятие сетевых служб.
- 5. Дайте понятие ІР-адреса.
- 6. Дайте понятие маски ІР-адреса.
- 7. Как определить номер сети и номер узла по IP-адресу?
- 8. Структуры ІР-адресов разных классов.
- 9. Определите номер сети и узла, если IP-адрес 129.64.134.5, а маска 255.255.128.0.
- 10. Как задать ІР-адреса для группы компьютеров в подсети?
- 11. Как получить адреса сети и узла, используя двоично-точечную нотацию IP-адреса и маски? Приведите пример.
- 12. Как назначаются IP-адреса, если сеть должна работать как составная часть Internet?
- 13. Опишите этапы подключения к сети и настройки компьютера для работы в сети.
- 14. Как вывести/отключить пиктограмму сетевого подключения?
- 15. Как задать имя создаваемой сети?
- 16. Как вызвать окно Network Connections и подключиться к сети?
- 17. Как установить сетевые компоненты подключения?
- 18. Как установить ІР-адрес на компьютере?
- 19. Как задать права доступа к папкам и файлам компьютера?
- 20. Опишите технологию передачи данных по сети через общую папку?
- 21. Как организовать передачу сообщений по сети через командную строку?
- 22. Что такое модуляция? Для чего она применяется? Приведите примеры непрерывной и импульсной модуляции.
- 23. Что такое переносчик? Понятие непрерывного и импульсного переносчика.
- 24. Изобразите и прокомментируйте спектр импульсного переносчика.
- 25. Запишите условие, при котором в спектре импульсного переносчика будут отсутствовать четные гармоники. Изобразите спектр такого переносчика.
- 26. Запишите условие, при котором в спектре импульсного переносчика будут отсутствовать гармоники, кратные пяти. Изобразите спектр такого переносчика.
- 27. Изобразите временную диаграмму и спектр переносчика со скважностью импульсов Q=4.
- 28. Изобразите временную диаграмму и спектр сигнала с модуляцией АМ-ДБП. Как определяется практическая ширина спектра такого сигнала?

- 29. Изобразите временную диаграмму и спектр сигнала с модуляцией АМ-ОБП. Укажите достоинство этого вида модуляции. Как определяется практическая ширина спектра такого сигнала?
- 30. Изобразите временную диаграмму и спектр сигнала с модуляцией АМ-Б. Укажите достоинство такого вида модуляции. Как определяется практическая ширина спектра такого сигнала?
- 31. Изобразите временную диаграмму и спектр сигнала с модуляцией АМн. Как определяется практическая ширина спектра такого сигнала?
- 32. Изобразите временную диаграмму и спектр сигнала с модуляцией ЧМ. Как определяется практическая ширина спектра такого сигнала?
- 33. Как влияет индекс частотной модуляции на спектр ЧМ-сигнала?
- 34. Понятие и назначение цифровой модуляции.
- 35. Понятия низкочастотного и полосового сигналов в цифровой модуляции.
- 36. Основные виды цифровой модуляции и их математическое описание.
- 37. Дайте понятие многопозиционной модуляции, приведите примеры.
- 38. Временные диаграммы и сигнальные созвездия для 4-PSK, 4-DPSK, 8-PAM.
- 39. Что такое ASK, FSK, PSK, DPSK?
- 40. Что такое М-РАМ, М-QAM?
- 41. Что такое M-FSK, M-PSK, M-DPSK?
- 42. Что такое сигнальное созвездие?
- 43. Что такое отношение сигнал/шум?
- 44. Дайте понятие когерентного и некогерентного детектирования.
- 45. Поясните с помощью сигнального созвездия принцип детектирования в условиях помех.
- 46. Как оценивается помехоустойчивость цифровых видов модуляции?
- 47. Сравните PSK и DPSK с точки зрения помехоустойчивости и сложности аппаратной реализации.
- 48. Сравните по результатам моделирования помехоустойчивость PSK и QAM.
- 49. Как и почему влияет кратность цифровой модуляции на помехоустойчивость и скорость передачи данных?
- 50. Поясните схему визуального моделирования приемопередающего тракта с M-PSK.
- 51. Поясните полученные в результате моделирования графические зависимости символьной ошибки для указанных видов модуляции.
- 52. Поясните полученные в результате моделирования временные, спектральные и векторные диаграммы для указанных видов модуляции.
- 53. Сравните указанные преподавателем виды модуляции по результатам моделирования.
- 54. Сравните результаты аналитического и экспериментального определения вероятности символьной ошибки для указанных видов модуляции.
- 55. Составьте модель, позволяющую сформировать таблицу кодирования для заданного вида модуляции.
- 56. Как сформировать кодовую комбинацию CRC-кода?
- 57. Понятие образующего полинома и его свойства.
- 58. Понятие кодового расстояния и его связь с кратностью обнаруживаемых и исправляемых ошибок.
- 59. Методика построения кодирующего устройства СКС-кода и принцип его действия.
- 60. Процедура обнаружения ошибок в комбинациях CRC-кода.
- 61. Методика построения декодирующего устройства CRC-кода и принцип его действия в режиме обнаружения ошибок.
- 62. Процедура исправления однократных ошибок в комбинациях СКС-кода. Понятие выделенного синдрома.
- 63. Схема декодирующего устройства CRC-кода, принцип ее действия в режиме исправления ошибок.
- 64. Как оценить эффективность СRС-кода аналитически?

- 65. Экспериментальное оценивание показателей эффективности корректирующего кода.
- 66. Объяснить характер зависимостей $p_{00}(p)$, $p_{uo}(p)$, $p_{uo}(p)$.
- 67. Объяснить характер зависимостей доверительных интервалов для оцениваемых вероятностей роо, рио от длины тестовой последовательности N.
- 68. Описать работу модели для исследования СRC-кода в однократном и многократном режимах.
- 69. Составить схему кодирующего устройства CRC-кода на основе образующего полинома и проиллюстрировать его работу с помощью таблицы состояний.
- 70. Составить схему кодирующего устройства CRC-кода на основе образующего полинома, ориентированную на обнаружение ошибок, и записать алгоритм работы устройства.
- 71. Составить схему декодирующего устройства CRC-кода на основе образующего полинома, ориентированную на обнаружение ошибок, и проиллюстрировать работу устройства с помощью таблицы состояний.
- 72. Составить схему декодирующего устройства CRC-кода на основе образующего полинома, ориентированную на обнаружение ошибок, и проиллюстрировать работу устройства с помощью таблицы состояний.
- 73. Составить схему декодирующего устройства CRC-кода на основе образующего полинома, ориентированную на исправление однократных ошибок и проиллюстрировать работу устройства с помощью таблицы состояний.
- 74. Объяснить работу кодирующего устройства по временным диаграммам модели.
- 75. Объяснить работу декодирующего устройства по временным диаграммам модели.
- 76. Объяснить работу анализатора ошибок по временным диаграммам модели.

Контролирующие вопросы для самоаттестации обучающихся

1. Какая топология ЛВС представлена на рисунке?

No	Варианты ответа	Правильные ответы
1	Шинная	
2	Радиальная	
3	Кольцевая	
4	Радиально-кольцевая	

5	Радиально-шинная	+
6	Древовидная	

2. Терминатор – необходимый элемент ЛВС с топологией:

No	Варианты ответа	Правильные ответы
1	Звезда	
2	Шина	+
3	Кольцо	
4	Радиально-кольцевая	
5	Древовидная	

3. Репитер – устройство, выполняющее функцию:

No	Варианты ответа	Правильные ответы
1	Усиление сигнала	
2	Восстановление сигнала	+
3	Помехоустойчивое кодирование сигнала	
4	Модуляцию сигнала	
5	Цифроаналоговое преобразование сигнала	

4. Какие из перечисленных особенностей характерны для сети с шинной топологией:

	не из пере телениях особетоетел характерия для сети с шингон топологиен.		
<u>№</u>	Варианты ответа	Правильные ответы	
1	Конфликты в сети в принципе невозможны		
2	Обрыв любого кабеля или короткое замыкание в нем		
	не нарушает работу сети		
3	При нарушении контакта кабеля легко определить		
	место неисправности		
4	Требует минимальное количество соединительного	+	
	кабеля		
5	Отсутствие центрального узла, через который	+	
	передается вся информация		

5. Для исключения отраженного сигнала в сети с шинной топологией применяется:

No	Варианты ответа	Правильные ответы
1	Репитеры	
2	Коннекторы	
3	Витая пара	
4	Терминаторы	+
5	Ресиверы	
6	Концентраторы	

6. Наиболее помехозащищенной средой передачи данных является:

No	Варианты ответа	Правильные ответы
1	Неэкранированная витая пара	
2	Экранированная витая пара	
3	Коаксиальный кабель	
4	Оптоволокно	+
5	Радиолиния	
6	Инфракрасный канал	
7	Воздушная линия связи	

7. Наиболее скоростной средой передачи данных является:

$N_{\underline{0}}$	Варианты ответа	Правильные ответы
1	Неэкранированная витая пара	
2	Экранированная витая пара	
3	Коаксиальный кабель	
4	Оптоволокно	+
5	Радиолиния	
6	Инфракрасный канал	
7	Воздушная линия связи	

8. Наиболее дорогостоящей средой передачи данных является:

No	Варианты ответа	Правильные ответы
1	Неэкранированная витая пара	
2	Экранированная витая пара	
3	Коаксиальный кабель	
4	Оптоволокно	+
5	Радиолиния	
6	Инфракрасный канал	
7	Воздушная линия связи	

9. Укажите порядковые номера уровней в иерархии сетевой модели OSI, начиная с нижнего уровня.

<u>No</u>	Название уровня	Порядковый номер в OSI
1	Канальный	2
2	Физический	1
3	Транспортный	4
4	Представительский	6
5	Сетевой	3
6	Сеансовый	5
7	Прикладной	7

10. Метод CSMA/CD случайного доступа к среде передачи данных:

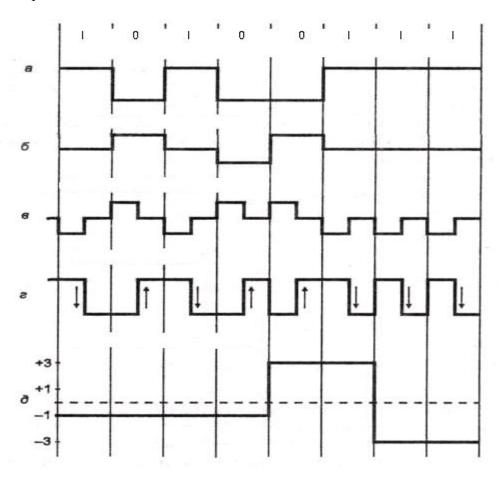
No	Варианты ответа	Правильные ответы
1	Исключает столкновение пакетов	
2	Позволяет работать в режиме реального времени	
3	Предполагает прослушивание передающей среды	+
4	Обнаруживает конфликты и разрешает их	+
5	Обеспечивает начало передачи пакета только в случае,	+
	когда передающая среда свободна	
6	Гарантирует величину времени доступа к сети	

11. При передаче непрерывного сообщения, спектр которого ограничен сверху частотой F_c , дискретным способом частота дискретизации F_{π} должна выбираться из условия:

No	Варианты ответа	Правильные ответы
1	Fä ≥ 0.5Fc	
2	Fä≥Fc	
3	Fä ≥1.5Fc	

4	Fä ≥ 2Fc	+
---	----------	---

12. Минимальная длительность пакета T_{min} в сети при случайном методе доступа к среде передачи данных должна составлять:


No	Варианты ответа	Правильные ответы
1	$T_{min}=6L/V$	
2	$T_{min}=2L/V$	+
3	T _{min} =L/V	
4	$T_{min}=4L/V$	

L - полная длина сети, V - скорость распространения сигнала в используемом кабеле.

13. Укажите, какими свойствами обладает манчестерский код:

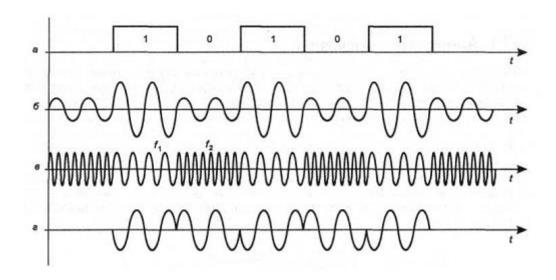
№	Варианты ответа	Правильные ответы
1	Отсутствует постоянная составляющая	+
2	Использует 3 уровня	
3	Обладает способностью распознавать ошибки	
4	Имеет наименьшую ширину спектра сигнала	
5	Обеспечивает побитовую синхронизацию между	+
	передатчиком и приемником	

14. Какие из перечисленных в вариантах ответа линейные коды проиллюстрированы на временных диаграммах?

No	Варианты ответа	Правильные ответы
1	Потенциальный код NRZ	+
2	Код 8В/10В	
3	Потенциальный биполярный код АМІ	+
4	Биполярный импульсный код RZ	+
5	Манчестерский код	+
6	Код 4В/5В	
7	Код 8В/6В	
8	Код HDB3	
9	Потенциальный код 2B1Q	+

15. Для чего применяется скремблирование?

No	Варианты ответа	Правильные ответы
1	Для того чтобы коды подобные NRZ, получили свойство	+
	самосинхронизации	
2	Для помехоустойчивого кодирования	
3	Для переноса спектра передаваемого сигнала в заданный	
	частотный диапазон	
4	Для расширения спектра сигнала	


16. Укажите, какие уровни сетевой модели OSI поддерживает протокол IPX/SPX.

No	Название уровня	Порядковый номер в OSI
1	Физический	
2	Канальный	
3	Сетевой	+
4	Транспортный	+
5	Сеансовый	
6	Представительский	
7	Прикладной	

17. Для чего применяется модуляция?

No	Варианты ответа	Правильные ответы
1	Для самосинхронизации передаваемого сигнала	
2	Для повышения помехоустойчивости	
3	Для переноса спектра передаваемого сигнала в заданный	+
	частотный диапазон	
4	Для сжатия передаваемых данных	
4	Для расширения спектра сигнала	

18. Какие из перечисленных в вариантах ответа видов модуляции проиллюстрированы на диаграммах б, в, г?

No	Варианты ответа	Правильные ответы
1	Абсолютная фазовая модуляция	+
2	Частотная модуляция	+
3	Двойная относительная фазовая модуляция	
4	Относительная фазовая модуляция	
5	Амплитудная модуляция	+
6	Тройная относительная фазовая модуляция	
7	Амплитудно-фазовая модуляция	

19. Как изменится скорость передачи данных при использовании модуляции 16-PSK?

16-позиционной фазовой

<u>No</u>	Варианты ответа	Правильные ответы
1	Уменьшится в 2 раза	
2	Увеличится в 2 раза	
3	Увеличится в 4 раза	+
4	Увеличится в 16 раз	
5	Останется неизменной	

20. Как изменится скорость передачи информации при использовании амплитудно-фазовой модуляции 8-АРК?

No	Варианты ответа	Правильные ответы
1	Увеличится в 2 раза	
2	Уменьшится в 2 раза	
3	Увеличится в 3 раза	+
4	Уменьшится в 3 раза	
5	Увеличится в 8 раз	
6	Уменьшится в 8 раз	

21. Какие из перечисленных методов модуляции используются для передачи непрерывных сообщений в цифровой форме?

No	Варианты ответа	Правильные ответы
1	AM (ASK)	
2	ЧМ (FSK)	
3	ΦM (PSK)	
4	ИКМ (РСМ)	+
5	ДКМ (DPCM)	+
6	АДКМ (АДРСМ)	+

22. При передаче данных используется амплитудно-фазовая модуляция (РАМ), причем фаза несущей принимает 4 значения, а амплитуда – 2 значения. С какой скоростью будут передаваться данные, если данные поступают на вход модема со скоростью 2400 бит/с?

№	Варианты ответа	Правильные ответы
1	9600 бит/с	+
2	7200 бит/с	
3	4800 бит/с	
4	19200 бит/с	
5	14400 бит/с	
6	2400 бит/с	

23. Укажите правильный вариант записи десятичного числа 936 в двоично-десятичном коде.

No	Варианты ответа	Правильные ответы
1	(11111111 111 111111)	
2	(1001 0011 0110)	+
3	(11110101000)	
4	3A8	
5	1650	

24. Укажите правильное значение кодового расстояния между кодовыми комбинациями 1001 и 1110.

$N_{\underline{0}}$	Варианты ответа	Правильные ответы
1	3	+
2	4	
3	7	
4	23	

25. Укажите правильное значение кратности исправляемых ошибок в коде с минимальным кодовым расстоянием 7.

No	Варианты ответа	Правильные ответы
1	3	+
2	6	
3	2	+
4	1	+

26. Укажите правильное значение кратности обнаруживаемых ошибок в коде с минимальным кодовым расстоянием 5.

No	Варианты ответа	Правильные ответы
1	3	+
2	5	
3	2	+
4	1	+

27. Представьте безызбыточную кодовую комбинацию 1011 в коде (7,4) с образующей матрицей

$$\mathbf{G}_{4,7} = \begin{bmatrix} 1000 \vdots 101 \\ 0100 \vdots 011 \\ 0010 \vdots 110 \\ 0001 \vdots 111 \end{bmatrix}.$$

$N_{\underline{0}}$	Варианты ответа	Правильные ответы
1	1011010	
2	1011101	
3	1011100	+
4	1011110	

28. Кодовая комбинация 1001 передана с использованием систематического кода (7,4), построенного на основе образующей матрицы

$$\mathbf{G}_{4,7} = \begin{bmatrix} 1000:011\\0100:101\\0010:110\\0001:111 \end{bmatrix}.$$

Принята комбинация 1011010. Будет ли обнаружена ошибка в принятой комбинации?

No	Варианты ответа	Правильные ответы
1	Да	
2	Нет	+

29. Представьте безызбыточную кодовую комбинацию 1011 в коде (7,4) с образующей матрицей

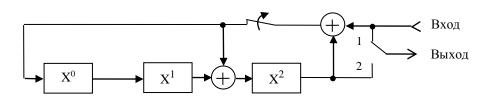
$$\mathbf{G}_{4,7} = \begin{bmatrix} 1000:101\\0100:011\\0010:110\\0001:111 \end{bmatrix}.$$

$N_{\underline{0}}$	Варианты ответа	Правильные ответы
1	1011010	
2	1011101	
3	1011100	+
4	1011110	

30. Представьте безызбыточную кодовую комбинацию 1010 в виде комбинации CRC-кода с образующим полиномом $G(x) = x^3 + x + 1$.

№ Варианты ответа Правильные ответы

1	1011010	
2	1011101	
3	1010011	+
4	1011110	


31. Кодовая комбинация 1010 передана с использованием CRC-кода с образующим полиномом $G(x) = x^3 + x + 1$. Принята комбинация 1011000. Сколько искаженных разрядов в принятой комбинации?

No	Варианты ответа	Правильные ответы
1	0	
2	1	
3	2	
4	3	+

32. Кодовая комбинация 1010 передана с использованием CRC-кода с образующим полиномом $G(x) = x^3 + x + 1$. Принята комбинация 1011000. Будет ли обнаружена ошибка в принятой комбинации?

No	Варианты ответа	Правильные ответы
1	Да	
2	Нет	+

33. Какой из указанных в вариантах ответа образующих полиномов положен в основу построения кодера CRC-кода, схема которого представлена на рисунке?

<u>№</u>	Варианты ответа	Правильные ответы
1	$G(x) = x^3 + x + 1$	
2	$G(x) = x^3 + x^2 + 1$	+
3	$G(x) = x^2 + x + 1$	
4	G(x) = x + 1	

34. Какова вероятность приема 4-х-разрядной кодовой комбинации с однократной ошибкой в канале с независимыми ошибками, если вероятность искажения одного разряда равна 0,5?

$N_{\underline{0}}$	Варианты ответа	Правильные ответы
1	0.15	
2	0.25	+
3	0.50	
4	0.625	

35. Какой вид связи между двумя абонентами системы передачи данных называется полудуплексным?

$N_{\underline{0}}$	Варианты ответа	Правильные ответы
1	Односторонняя передача данных от абонента А к	
	абоненту В	
2	Двухсторонняя поочередная передача данных между	+
	абонентами А и В	
3	Двухсторонняя одновременная передача данных	
	между абонентами А и В	

36. Какой из семейства стандартов IEEE 802.х содержит рекомендации по проектированию беспроводных телекоммуникационных сетей.

№	Варианты ответа	Правильные ответы
1	802.3	
2	802.4	
3	802.5	
4	802.6	
5	802.10	
6	802.11	+

37. Укажите стандарты на витую пару.

No	Варианты ответа	Правильные ответы
1	10BASE5	
2	10BASE2	
3	10BASE-T	+
4	10BASE-FL	
5	100BASE-TX	+
6	100BASE-FX	
7	100BASE-T4	+

38.Укажите скорость передачи по элементарному стандартному цифровому каналу телефонной сети.

$N_{\underline{0}}$	Варианты ответа	Правильные ответы
1	56 Кбит/с	
2	128 Кбит/с	
3	256 Кбит/с	
4	64 Кбит/с	+
5	32 Кбит/с	

39. Минимальный размер кадра (пакета без преамбулы) в сети Ethernet равен:

No	Варианты ответа	Правильные ответы
1	46 байт	
2	64 байта	+
3	72 байта	
4	128 байт	

40. Максимальный размер поля данных в сети Ethernet равен:

№		Варианты ответа	Правильные ответы
1	512 байт		
2	1024 байт		
3	1500 байт		+

4	2000 байт	

41. Длительность кадра (пакета без преамбулы) минимального размера в сети Ethernet равна

No	Варианты ответа	Правильные ответы
1	9,6 мкс	
2	51,2 мкс	+
3	57,6 мкс	
4	128 мкс	

42. Укажите, какие из перечисленных сетевых устройств, строят адресную таблицу, на основании которой принимают решение о передаче пришедшего кадра в другой сегмент сети.

$N_{\underline{0}}$	Варианты ответа	Правильные ответы
1	Повторитель	
2	Концентратор	
3	Прозрачный мост	+
4	Мост с маршрутизацией от источника (Source Routing)	
5	Коммутатор	+

43. Что произойдет, если в сети, построенной на мостах или коммутаторах, имеются петли?

No	Варианты ответа	Правильные ответы
1	Сеть будет работать нормально	
2	Кадры не будут доходить до адресата	
3	В сети при передаче любого кадра будет возникать	
	коллизия	
4	Будет происходить постоянная перестройка адресных	+
	таблиц	
5	Произойдет зацикливание кадра	+

44. Какие из следующих утверждений верны всегда?

No	Варианты ответа	Правильные ответы
1	Каждый порт моста/коммутатора имеет МАС-адрес	
2	Каждый моста/коммутатора имеет сетевой адрес	+
3	Каждый маршругизатор имеет сетевой адрес	
4	Каждый порт маршрутизатора имеет МАС-адрес	+
5	Каждый порт маршрутизатора имеет сетевой адрес	+

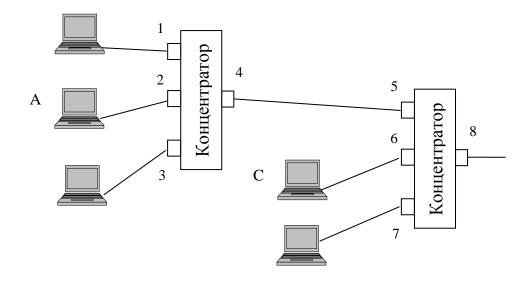
45. Для логической структуризации сети используются

No	Варианты ответа	Правильные ответы
1	Повторители	
2	Концентраторы	

3	Мосты	+
4	Коммутаторы	+
5	Маршрутизаторы	+

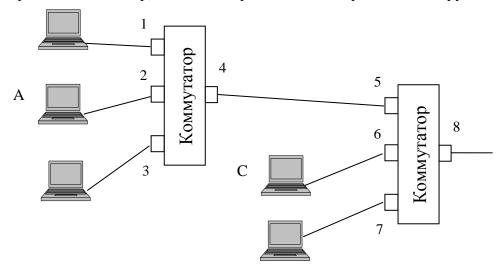
46. Логическая структуризация сети позволяет

No	Варианты ответа	Правильные ответы
1	Увеличить пропускную способность сети	+
2	Уменьшить задержку доступа к среде передачи данных	+
3	Повысить степень защищенности данных от	
	несанкционированного доступа	
4	Упростить управление сетью	


47. Определите номер подсети, если IP-адрес 129.64.134.5, а маска 255.255.128.0

No	Варианты ответа	Правильные ответы
1	129.64.128.0	+
2	0.0.6.5	
3	129.64.0.0	
4	129.64.6.5	
5	129.64.134.5	

48. Определите номер узла в подсети, если IP-адрес 129.64.134.5, а маска 255.255.128.0


No	Варианты ответа	Правильные ответы
1	129.64.128.0	
2	0.0.6.5	+
3	129.64.0.0	
4	129.64.6.5	
5	129.64.134.5	

49. На каких портах появится кадр, если его отправил компьютер А компьютеру С?

$N_{\underline{0}}$	Варианты ответа	Правильные ответы
1	Ha 2, 4, 5, 6	
2	Ha 2, 4, 5, 6, 7	
3	Ha 1, 2, 3, 4, 5, 6	
4	Ha 1, 2, 3, 4, 5, 6, 7	
5	Ha 1, 2, 3, 4, 5, 6, 7, 8	+

50. На каких портах появится кадр, если его отправил компьютер А компьютеру С?

$N_{\underline{0}}$	Варианты ответа	Правильные ответы
1	2, 4, 5, 6	+
2	2, 4, 5, 6, 7	
3	1, 2, 3, 4, 5, 6	
4	1, 2, 3, 4, 5, 6, 7	
5	1, 2, 3, 4, 5, 6, 7, 8	

51. Какова пропускная способность канала связи для канала с шириной полосы 20 к Γ ц, если мощность передатчика составляет 0,031 мBт, а мощность шума в канале 0,001 мBт.

No	Варианты ответа	Правильные ответы
1	1 Мбит/с	
2	10 Кбит/с	
3	100 Кбит/с	+
4	20 Кбит/с	
5	310 Кбит/с	

52. Определите пропускную способность канала связи для каждого из направлений дуплексного режима, если его полоса пропускания равна 600 кГц, а сигнал при кодировании принимает 16 состояний.

No	Варианты ответа	Правильные ответы
1	240 Кбит/с	+
2	24 Кбит/с	
3	16 Кбит/с	
5	600 Кбит/с	
6	300 Кбит/с	

53. Определите затухание сигнала в канале, если мощность сигнала на входе канала равна 100 мВт, а мощность сигнала на выходе канала равна 0,1 мВт.

№	Варианты ответа	Правильные ответы
1	- 40 дБ	
2	- 60 дБ	
3	- 20 дБ	+
5	- 10 дБ	

Составил доцент кафедры АИТУ к.т.н., доцент

А.Н. Гаврилов

Заведующий кафедрой АИТУ, к.т.н., доцент

П.В. Бабаян