ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

«Тепловые процессы в электронике»

Компетенции:

ПК-1 - Способен строить физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, использовать стандартные программные средства их компьютерного моделирования и проводить анализ результатов

ПК-2 - Способен анализировать, систематизировать и обобщать результаты исследований приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения

1. Паспорт фонда оценочных средств по дисциплине

В результате освоения программы бакалавриата по дисциплине «Тепловые процессы в электронике» у выпускника должен быть сформирован широкий спектр знаний, соответствующих компетенциям ПК1 и ПК6. Распределение этих знаний по контролируемым разделам дисциплины приведено в следующей таблице.

№ п/п	Контролируемые разделы дисциплины	Код компе- тенции	Оценочное средство
1	2	3	4
1	Введение . Влияние теплового режима на надежность и выходные параметры приборов. Основные виды теплопередачи, используемые в системах охлаждения электронных приборов.	ПК1, ПК2	Экзамен
1	2	3	4
2	Передача тепла излучением. Основные закономерности теплового излучения: Законы Кирхгофа, Планка, смещения Вина, Стефана-Больцмана, Ламберта. Теплообмен между абсолютно черными поверхностями. Угловые коэффициенты облученности. Теплообмен между диффузно-серыми поверхностями. Метод «лучистого сальдо», уравнение Христиансена. Защита от теплового излучения.	ПК1, ПК2	Экзамен
3	Передача тепла теплопроводностью. Температурное поле, изотермические поверхности, градиент температуры. Закон теплопроводности Фурье. Дифференциальное уравнение теплопроводности в твердом теле. Теплопроводность в плоской и цилиндрической стенках. Термическое сопротивление. Теплопередача через плоскую и цилиндрическую стенки. Теплоизоляция.	ПК1, ПК2	Экзамен

		THE THE	1
	Передача тепла конвекцией. Дифференциальное	ПК1, ПК2	
	уравнение теплопроводности в текучей среде.		
	Уравнение сплошности потока. Уравнения Навье –		
	Стокса. Дифференциальные уравнения конвектив-		
	ного теплообмена в безразмерной форме. Числа		
	подобия. Условия подобия тепловых процессов.		
	Метод анализа размерностей, общий вид критери-		
	альных соотношений конвективного теплообмена		
	естественной и вынужденной конвекцией, некото-		
4	рые критериальные соотношения. Теплоотдача в		Экзамен
	канале постоянного поперечного сечения произ-		
	вольной формы, изменение температур жидкости		
	и стенки канала, температурного напора и плотно-		
	сти теплового потока в продольном сечении кана-		
	ла. Среднеинтегральные значения коэффициента		
	теплоотдачи и температурного напора в канале.		
	Логарифмический температурный напор. Частный		
	случай нестационарного конвективного теплооб-		
	мена твердого тела с текучей средой.		
	Интенсификация теплообмена компонентов	ПК1, ПК2	
	РЭА. Развитие поверхности теплообмена путем		
	оребрения. Передача теплового потока через пря-		
5	моугольные и круглые ребра. Оптимизация ореб-		Экзамен
3	рения. Конфигурирование теплоотводов на по-		Экзамен
	верхности и в объеме печатной платы для интен-		
	сификации теплоотдачи элементов печатного мон-		
	тажа.		
	Теплообменные аппараты. Классификация теп-	ПК1, ПК2	
	лообменных аппаратов: контактные и поверхност-		
	ные, регенеративные и рекуперативные теплооб-		
6	менники. Виды рекуперативных теплообменни-		Экзамен
	ков: кожухотрубные и пластинчатые теплообмен-		Экзамен
	ники, их достоинства и недостатки. Основные со-		
	отношения, описывающие теплообмен в рекупера-		
	тивном теплообменнике в режиме противотока.		
	Общие принципы расчета температур полу-	ПК1, ПК2	
	проводниковых компонентов РЭА в корпусе.		
	Тепловое сопротивление «кристалл (переход) -		
7.	корпус», «кристалл (переход) – окружающая сре-		Экзамен
	да». Особенности применения этих характеристик		
	в задачах расчета тепловых режимов полупровод-		
	никовых компонентов РЭА.		

Лабораторный практикум

№ п/п	Наименование лабораторных работ	Перечень формируемых компетенций
1	Экспериментальное определение коэффициента излучения поверхности.	ПК1, ПК2

2	Изучение методов измерения плотности тепловых потоков и сопротивления теплопередаче материалов	ПК1, ПК2
3	Теоретическое и экспериментальное определение коэффициента теплоотдачи воздушного радиатора в режиме естественной конвекции	ПК1, ПК2
4	Экспериментальное определение коэффициента теплоотдачи воздушного радиатора в режиме вынужденной конвекции	ПК1, ПК2

Практические занятия

№ п/п	Тема занятий	Перечень формируемых компетенций
1	Передача тепла излучением	ПК1, ПК2
2	Передача тепла теплопроводностью	ПК1, ПК2
3	Моделирование процесса стабилизации теплового режима газоразрядного лазера с учетом теплообмена излучением и конвекцией	ПК1, ПК2
4	Моделирование распределения температуры в основании и ребрах воздушного радиатора в режиме естественной конвекции	ПК1, ПК2
5	Охлаждение мощной радиоэлектронной аппаратуры. Двухконтурные жидкостные системы охлаждения	ПК1, ПК2
6	Расчет температуры кристалла полупроводникового устройства	ПК1, ПК2

Курсовой проект

№ п/п	Тема	Перечень формируемых компетенций
1	«Расчет систем двухконтурного жидкостного охлаждения устройств электронной техники»	ПК1, ПК2

2. Критерии оценивания компетенций

1. Уровень усвоения материала, предусмотренного программой.

- 2. Умение анализировать излагаемый материал.
- 3. Умение устанавливать причинно-следственные связи.
- 4. Ответы на вопросы: полнота, аргументированность, убежденность.
- 5. Качество ответа: общая композиция; логичность; эрудиция.
- 6. Использование дополнительной литературы.

3. Шкала оценивания для оформления итогового экзамена по дисциплине

Ответ на экзамене оценивается по 4-х уровневой системе: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». При этом в независимости от уровня усвоения материала оценка неудовлетворительно выставляется в случае, если студент не выполнил лабораторные работы и/или практические задания, предусмотренные учебным графиком.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующие этапы формирования компетенций

При определении уровня экзаменационной оценки следует исходить из общепринятых требований:

- оценки «отлично» заслуживает студент, обнаруживший глубокое знание учебнопрограммного материала, успешно выполнивший все программные задания, усвоивший основную и дополнительную литературу.
- оценки «хорошо» заслуживает студент, выполнивший все программные задания, усвоивший основную литературу и обнаруживший достаточно полное знание учебнопрограммного материала.
- оценки «удовлетворительно» заслуживает студент, справляющийся с выполнением программных заданий, знакомый с основной литературой, обнаруживший знания программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии.
- оценка «неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях программного материала.

5. Типовые контрольные задания или иные материалы

Типовые контрольные задания включают в себя перечень вопросов к итоговому экзамену по дисциплине и перечень вопросов для самостоятельной подготовки студентов.

5.1. Вопросы к экзамену по дисциплине

- 1. Влияние теплового режима на надежность и выходные параметры приборов. Основные виды теплопередачи, используемые в системах охлаждения электронных приборов.
 - 2. Законы Кирхгофа, Стефана Больцмана, Вина и Ламберта.
 - 3. Формула Планка.
- 3. Теплообмен между абсолютно черными поверхностями. Угловые коэффициенты излучения.
 - 4. Теплообмен между диффузно-серыми поверхностями.
 - 5. Метод «лучистого сальдо», уравнение Христиансена.
 - 6. Защита от теплового излучения.
 - 7. Температурное поле, изотермические поверхности, градиент температуры.
- 8. Закон теплопроводности Фурье. Дифференциальное уравнение теплопроводности в твердом теле.
 - 9. Теплопроводность в плоской и цилиндрической стенках. Термическое сопротив-

ление.

- 10. Теплопередача через плоскую и цилиндрическую стенки. Теплоизоляция.
- 11. Дифференциальное уравнение теплопроводности в текучей среде. Уравнение сплошности потока.
 - 12. Уравнения Навье Стокса.
- 13. Дифференциальные уравнения конвективного теплообмена в безразмерной форме. Числа подобия.
 - 14. Условия подобия тепловых процессов.
- 15. Метод анализа размерностей, общий вид критериальных соотношений конвективного теплообмена естественной и вынужденной конвекцией.
- 16. Теплоотдача в канале постоянного поперечного сечения произвольной формы. Изменение температур жидкости и стенки канала, температурного напора и плотности теплового потока в продольном сечении канала.
- 17. Теплоотдача в канале постоянного поперечного сечения произвольной формы. Среднеинтегральные значения коэффициента теплоотдачи и температурного напора в канале. Логарифмический температурный напор.
- 18. Частный случай нестационарного конвективного теплообмена твердого тела с текучей средой.
- 19. Передача теплового потока через прямоугольное ребро. Оптимизация оребрения.
 - 20. Передача теплового потока через круглое ребро. Оптимизация оребрения.
- 21. Конфигурирование теплоотводов на поверхности и в объеме печатной платы для интенсификации теплоотдачи элементов печатного монтажа.
- 22. Классификация теплообменных аппаратов: контактные и поверхностные, регенеративные и рекуперативные теплообменники. Виды рекуперативных теплообменников: кожухотрубные и пластинчатые теплообменники, их достоинства и недостатки.
- 23. Основные соотношения, описывающие теплообмен в рекуперативном теплообменнике в режиме противотока.
- 24. Общие принципы расчета температур полупроводниковых компонентов РЭА в корпусе. Тепловое сопротивление «кристалл (переход) корпус», «кристалл (переход) окружающая среда». Особенности применения этих характеристик в задачах расчета тепловых режимов полупроводниковых компонентов РЭА.

5.2. Вопросы для самостоятельной работы по дисциплине

Основные закономерности теплового излучения: Теплообмен между диффузносерыми поверхностями. Метод «лучистого сальдо», формула Христиансена.

Закон теплопроводности Фурье. Теплопроводность в многослойной плоской и цилиндрической стенке. Нестационарные процессы теплопередачи.

Уравнение теплоотдачи Ньютона — Рихмана. Эквивалентный диаметр, режимы движения жидкости, ее средняя температура, массовый и объемный расходы. Теплоотдача в каналах при вынужденной конвекции. Коэффициент трения, перепад давления в каналах.

Способы повышения эффективности теплообмена. Оптимизация оребрения.

Уравнения теплообмена. Коэффициент теплопередачи в теплообменнике. Среднелогарифмическая разность температур.

Приложение составил к.т.н., доц. кафедры ПЭЛ	 А.А. Фефелов
Заведующий кафедрой	
«Промышленная электроника»	С.А. Круглов

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО ФГБОУ ВО "РГРТУ", РГРТУ, Круглов Сергей Александрович, Заведующий кафедрой ПЭЛ

20.08.25 18:56 (MSK)

Простая подпись