МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. В.Ф. УТКИНА

Кафедра «Автоматизация информационных и технологических процессов»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Дисциплины

Б1.О.05 «Теоретические основы автоматического управления»

Направление 15.04.04 «Автоматизация технологических процессов и производств»

Квалификация выпускника – магистр Формы обучения – очная, очно-заочная Оценочные материалы – это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях. При оценивании результатов освоения практических занятий применяется шкала оценки «зачтено — не зачтено». Количество практических занятий и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена.

Форма проведения экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса и задача. После подготовки обучаемого к ответу на вопросы экзаменационного билета, проводится теоретическая беседа преподавателя с обучаемым для уточнения экзаменационной оценки.

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	Стандартная структура типовой	ОПК-1	экзамен
	замкнутой системы	ОПК -5	
	автоматического управления	ОПК-9	
	(САУ).	ОПК-11	
		ПК-3	
2	Устройство и принцип действия	ОПК-1	экзамен
	САУ. Оценка качества регулирования.	ОПК -5	
		ОПК-9	
		ОПК-11	
		ПК-3	

Паспорт фонда оценочных средств по дисциплине

Шкала оценки сформированности компетенций

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме экзамена, используется пятибалльная оценочная шкала:

«Отлично» заслуживает обучающийся, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется обучающимся, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой

профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает обучающийся, обнаруживший полное знание учебно-программного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется обучающимся, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает обучающийся, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется обучающимся, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится обучающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Перечень практических занятий

- 1. Определение передаточных функций. 4 ч.
- 2. Построение структурных схем и их преобразование. 4 ч.
- 3. Статическая точность САР по задающему и возмущающему воздействию. 4 ч.
- 4. Синтез САР с использование корректирующего устройства. 4 ч.

Типовые контрольные задания или иные материалы Код контролируемой компетенции: ОПК-1, ОПК -5, ОПК-9, ОПК-11, ПК-3

ОПК-1

- 1. Для чего создают математическую модель системы?
- 2. Алгоритм исследования динамики объекта:
 - 1. Описать техническое устройство и его части и свойства и составить математическую модель и выдвинуть необходимые допущения
 - 2. Записать дифференциальные уравнения, описывающие поведение модели и решить уравнения относительно выходных переменных.
 - 3. Провести анализ результатов. При необходимости скорректировать математическую модель.
 - 4. Все перечисленные выше пункты.
- 3. Принцип преобразования Лапласа.
- 4. На основании чего получают дифференциальные уравнения, описывающие динамику физического объекта;
- 5. Графическое изображение комплексного числа.
- 6. Динамические характеристики технических систем.
- 7. Статические характеристики технических систем.
- 8. Типовые входные воздействия описываются следующими функциями:
 - 1. ступенчатой, импульсной
 - 2. импульсной
 - 3. гармонической, импульсной
 - 4. ступенчатой, импульсной, гармонической
- 9. Начертите, как выглядит гармоническая функция.

- 10. Объясните понятие «единичная ступенчатая функция».
- 11. Объясните понятие «единичный импульс».
- 12. Реакция системы на единичный ступенчатый сигнал называется:
 - 1. переходная функция
 - 2. ступенчатая функция
 - 3. единичная функция
 - 4. первая функция
- 13. Реакция системы на единичный импульс называется:
 - 1. весовая функция
 - 2. мерная функция
 - 3. единичная функция
 - 4. импульсная функция
- 14. Понятие передаточной функции.
- 15. Понятие решетчатой функции.
- 16. Методика расчета передаточной функции.
- 17. Перечислите несколько названий типовых звеньев автоматики.
- 18. Уравнение инерционного звена, если х(t)- входная, а у(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T\frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T\frac{dx}{dt} + x(t);$$

$$4 - T\frac{dy}{dt} = x(t).$$

19. Уравнение безынерционного звена, если х(t)- входная, а у(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T\frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T\frac{dx}{dt} + x(t);$$

$$4 - T\frac{dy}{dt} = x(t).$$

20. Передаточная функция безынерционного звена:

$$1 - W(p) = k;$$

$$2 - W(p) = \frac{k}{Tp+1};$$

$$3 - W(p) = \frac{k(Tp+1)}{p};$$

$$4 - W(p) = Tp+1.$$

21. Передаточная функция инерционного звена:

$$1-W(p) = k;$$

$$2-W(p) = \frac{k}{Tp+1};$$

$$3-W(p) = \frac{k(Tp+1)}{p};$$

$$4-W(p) = Tp+1.$$

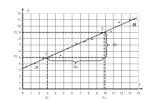
22. Передаточная функция идеального интегрирующего звена:

$$\begin{split} 1 - W(p) &= \frac{k}{p}; \\ 2 - W(p) &= \frac{k(T_1 p + 1)}{(T_2 p + 1)}; \\ 3 - W(p) &= Tp; \\ 4 - W(p) &= \frac{Tp}{Tp + 1}. \end{split}$$

23. Передаточная функция идеального дифференциального звена:

$$1-W(p) = \frac{k}{p};$$

$$2-W(p) = \frac{k(T_1p+1)}{(T_2p+1)};$$


$$3-W(p) = Tp;$$

$$4-W(p) = \frac{Tp}{Tp+1}.$$

- 24. Что такое структурная схема САУ?
- 25. Основные типы соединений звеньев:
 - 1. последовательное, параллельное и с обратными связями
 - 2. последовательное, параллельное
 - 3. последовательное и с обратными связями
 - 4. параллельное и с обратными связями
- 26. Как рассчитывается общая передаточная функция для последовательного соединения звеньев?
- 27. Как рассчитывается общая передаточная функция для параллельного соединения звеньев?
- 28. Дана отрицательная обратная связь. Тогда:
 - 1. выходная величина регулятора вычитается из входной величины объекта
 - 2. выходная величина регулятора складывается с входной величиной объекта
 - 3. выходная величина регулятора не учитывается
 - 4. нет правильного ответа
- 29. Система с положительной обратной связью имеет передаточную функцию:

$$W(p) = \frac{W_{o\delta}(p)}{1 - W_{o\delta}(p) \cdot W_p(p)}.$$
 1.

- 2. 1
- 3. -1
- 4. Нет правильного ответа.
- 30. Виды частотных характеристик.
- 31. Понятие логарифмических частотных характеристик.
- 32. Понятие годографа.
- 33. Принцип построения ЛАЧХ.
- 34. Перечислите некоторые виды звеньев автоматики.
- 35. Какое звено называют интегральным:
 - 1. Интегральным называется такое звено, выходная величина которого пропорциональна интегралу по времени от входной величины.
 - 2. Звено описывается следующим дифференциальным уравнением.
 - 3. Звено, выходная величина которого пропорциональна скорости изменения входной величины.
 - 4. Звено, которое на выходе воспроизводит входной сигнал без искажений, однако с некоторым постоянным запаздыванием.
- 36. Напишите второй закон Ньютона в дифференциальном виде.
- 37. Напишите закон Ома в дифференциальном виде.
- 38. Построить график зависимости у=0,58х+3,2.
- 39. Написать управление прямой согласно графику.

- 40. Начертите последовательное соединение звеньев.
- 41. Начертите параллельное соединение звеньев.
- 42. Начертите два последовательных звена, охваченных обратной связью.
- 43. Даны три звена с передаточными функциями W₁, W₂, W₃, соединенные последовательно. Найдите их эквивалентную передаточную функцию.
- 44. Даны три звена с передаточными функциями W1, W2, W3, соединенные параллельно. Найдите их эквивалентную передаточную функцию.
- 45. Выполнить преобразование Лапласа

$$\frac{d^2x}{dt^2} + x = 0$$

- 46. Получить передаточную функцию для уравнения $\frac{d^2x}{dt^2} + x = 0$ 47. Определить поставлять поставлять
- 47. Определить постоянную времени апериодического звена с коэффициентом передачи K = 10, если частота сопряжения его ЛАЧХ равна $lg\omega = 2$:
 - 1. 1
 - 2. 0,1
 - 3. 0,01
 - 4. 0
- 48. Найти передаточную функцию последовательно соединенных передаточными функциями 8р и 0,01/(p+1):
 - 1. $0.01/(8p^2+p)$
 - 2. 0.08p/(p+1)
 - 3. 0.08p(p+1)
 - 4. 0.08p+1
- 49. Изобразите логарифмическую частотную характеристику для безынерционного звена:

2

4.

50. Эквивалентная передаточная функция параллельного соединения звеньев равна:

$$1.Wээк(p) = \prod_{i=1}^{n} W_i(p)$$

$$2W$$
ээк $(p) = \sum_{i=1}^{n} W_i(p);$

$$2W$$
ЭЭК $(p) = \sum_{i=1}^{n} W_i(p);$
$$3W$$
ЭЭК $(p) = \frac{W_{np}(p)}{1 \pm W_{np}(p)W_{oc}(p)}.$

4Нет правильного ответа

ОПК-5

- 1. Понятие автоматического управления.
- 2. Понятие объекта управления.
- 3. Классификация воздействий на объект управления.
- 4. Перечислите основные задачи теории автоматического управления.
- 5. Что может представлять собой система управления с точки зрения информационных технологий?
- 6. Какие элементы можно включить в систему управления:
 - 1. Объект управления
 - 2. Регулятор
 - 3. Датчики
 - 4. Все перечисленные выше пункты
- 7. Приведете пример системы стабилизации.
- 8. Приведите пример системы регулирования.
- 9. Какие условные обозначения могут встречаться в схемах автоматического управления:
 - 1. УУ, ОУ, ЗУ, Р
 - 2. YK, KY, KY, P
 - 3. УУУ, ОУУ, ЗУУ, Р
 - 4. УУ, ОУ, ЗУ, РУ
- 10. Дайте определение функциональной схемы САУ.
- 11. Дайте определений структурной схемы САУ.
- 12. Охарактеризуйте возмущающее воздействие.
- 13. Охарактеризуйте управляющее воздействие.
- 14. Типовые воздействия (можно выбрать несколько ответов):
 - 1. Единичное ступенчатое
 - 2. Дельта-функция
 - 3. Гармоническое воздействие
 - 4. Воздействие, изменяющееся в постоянной скоростью или ускорением.
- 15. К каким воздействиям относятся помехи:
 - 1. Внешние
 - 2. Внутренние
 - 3. Первичные
 - 4. Актуальные
- 16. Опишите работу регулятора.
- 17. Опишите систему непрерывного действия.
- 18. Опишите систему дискретного действия.
- 19. Опишите нелинейную систему.
- 20. Для чего создают математическую модель системы?
- 21. Алгоритм исследования динамики объекта:
 - 1. Описать техническое устройство и его части и свойства и составить математическую модель и выдвинуть необходимые допущения
 - 2. Записать дифференциальные уравнения, описывающие поведение модели и решить уравнения относительно выходных переменных.
 - 3. Провести анализ результатов. При необходимости скорректировать математическую модель.
 - 4. Все перечисленные выше пункты.
- 22. На основании чего получают дифференциальные уравнения, описывающие динамику физического объекта?
- 23. Динамические характеристики технических систем.
- 24. Статические характеристики технических систем.
- 25. Типовые входные воздействия описываются следующими функциями:
 - 1. ступенчатой, импульсной
 - 2. импульсной

- 3. гармонической, импульсной
- 4. ступенчатой, импульсной, гармонической
- 26. Начертите, как выглядит гармоническая функция.
- 27. Единичная ступенчатая функция.
- 28. Единичная ступенчатая функция.
- 29. Реакция системы на единичный ступенчатый сигнал называется:
 - 1. переходная функция
 - 2. ступенчатая функция
 - 3. единичная функция
 - 4. первая функция
- 30. Реакция системы на единичный импульс называется:
 - 1. весовая функция
 - 2. мерная функция
 - 3. единичная функция
 - 4. импульсная функция
- 31. Понятие передаточной функции.
- 32. Методика расчета передаточной функции.
- 33. Перечислите несколько названий типовых звеньев автоматики.
- 34. Уравнение инерционного звена, если х(t)- входная, а у(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T \frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T \frac{dx}{dt} + x(t);$$

$$4 - T \frac{dy}{dt} = x(t).$$

35. Уравнение безынерционного звена, если х(t)- входная, а у(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T \frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T \frac{dx}{dt} + x(t);$$

$$4 - T \frac{dy}{dt} = x(t).$$

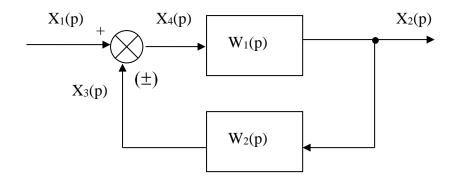
$$W(p) = \frac{(p+1)(0.5p+1)}{p(p+1)^2}$$
 . Определите характеристический

36. Передаточная функция имеет вид многочлен.

$$p(2p+1)$$

- 37. Определите значения нулей передаточной функции $W(p) = \frac{p(2p+1)}{(p+1)(0,5p+1)}$. 38. Какое звено имеет измести
- 38. Какое звено имеет наименьшее время регулирования

1.
$$W_1(p) = \frac{6}{p+1}$$


$$W_2(p) = \frac{11}{0.2 \, n + 1}$$

1.
$$W_{1}(p) = \frac{6}{p+1}$$

$$W_{2}(p) = \frac{11}{0.2p+1}$$
2.
$$W_{2}(p) = \frac{11}{0.1p+1}$$

4.
$$W_2(p) = \frac{11}{0.3p+1}$$

39. Определите передаточную функцию замкнутой системы $W(p) = X_2(p)/X_1(p)$.

40. Отметьте участок на графике, который показывает переходной процесс:

1		2
3	4	

- 41. Пусть допустимая статическая ошибка воспроизведения скачка задания не должна превышать значения 0,02. Для этого необходимо иметь полный коэффициент усиления системы не менее
 - 1. 49
 - 2. 0,02
 - 3. 2
 - 4. 100
- 42. Напишите эквивалентную передаточную функцию.

a)
$$Y_1$$
 Y_0
 $W_2(p)$
 Y_2
 Y_0
 Y_1
 Y_2
 Y_2
 Y_1
 Y_1
 Y_2
 Y_1

43. Напишите эквивалентную передаточную функцию.

$$\begin{array}{c} Y_0 \longrightarrow \underbrace{\Delta Y}_{W_{0,c}(p)} Y \end{array}$$

44. Начертите или опишите перенос сумматора влево

$$\xrightarrow{Y_0} \xrightarrow{W_1} \xrightarrow{Y_1} \xrightarrow{V_2} \xrightarrow{W_2} \xrightarrow{Y_2}$$

45. Поменяйте узлы местами

46. Поменяйте сумматоры местами.

$$\xrightarrow{\gamma_1} \xrightarrow{Z_2} \xrightarrow{Z_1} \xrightarrow{\gamma}$$

47. Модуль амплитудно-частотная функция вычисляется по формуле

$$A(\omega) = |W(j\omega)| = \sqrt{U^2(\omega) + V^2(\omega)},$$

Вычислите функцию, если действительная часть равна 0,3, мнимая -0,4.

48. Согласно таблицы 1 построить АЧХ.

Таблица 1.

1 0001111240				
ω, c ⁻¹	A (ω)	φ (ω)	$U(\omega)$	V(\omega)
0	1,00	0	1,0000	0
1	0,99	-5°40′	0,9900	-0,10
5	0,89	-26°30′	0,8000	-0,48
10	0,71	-45°	0,5000	-0,50
20	0,50	-63°30′	0,2000	-0,40
40	0,25	-76°	0,0600	-0,23
100	0,10	-84°10′	0,0100	-0,10

1000	0,01	-89°20′	0,0001	-0,01	
∞	0	-90°	0	0	

- 49. Согласно таблицы 1 построить ФЧХ.
- 50. Согласно таблицы 1 построить АФЧХ.

ОПК-9

- 1. Какие физические системы могут быть описаны дифференциальными уравнениями?
- 2. Опишите последовательность исследования динамики объекта:
 - 1. Описать техническое устройство и его части и свойства и составить математическую модель и выдвинуть необходимые допущения
 - 2. Записать дифференциальные уравнения, описывающие поведение модели и решить уравнения относительно выходных переменных.
 - 3. Провести анализ результатов. При необходимости скорректировать математическую модель.
 - 4. Все перечисленные выше пункты.
- 3. Опишите принцип преобразования Лапласа.
- 4. Как можно получить дифференциальное уравнение, описывающие динамику физического объекта.
- 5. Понятие комплексного числа.
- 6. Что значит дифференциальное уравнение первого порядка?
- 7. Типовые входные воздействия описываются следующими функциями:
 - 1. ступенчатой, импульсной
 - 2. импульсной
 - 3. гармонической, импульсной
 - 4. ступенчатой, импульсной, гармонической
- 8. Начертите, как выглядит гармоническая функция.
- 9. Опишите единичную ступенчатую функцию.
- 10. Реакция системы на единичный ступенчатый сигнал называется:
 - 1. переходная функция
 - 2. ступенчатая функция
 - 3. единичная функция
 - 4. первая функция
- 11. Реакция системы на единичный импульс называется:
 - 1.весовая функция
 - 2.мерная функция
 - 3.единичная функция
 - 4.импульсная функция
- 12. Понятие передаточной функции.
- 13. Понятие решетчатой функции.
- 14. Перечислите несколько названий типовых звеньев автоматики.
- 15. Уравнение инерционного звена, если х(t)- входная, а у(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T\frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T\frac{dx}{dt} + x(t);$$

$$4 - T\frac{dy}{dt} = x(t).$$

16. Уравнение безынерционного звена, если х(t)- входная, а у(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T\frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T\frac{dx}{dt} + x(t);$$

$$4 - T\frac{dy}{dt} = x(t).$$

17. Передаточная функция безынерционного звена:

$$1-W(p) = k;$$

$$2-W(p) = \frac{k}{Tp+1};$$

$$3-W(p) = \frac{k(Tp+1)}{p};$$

$$4-W(p) = Tp+1.$$

18. Передаточная функция инерционного звена:

$$1-W(p) = k;$$

$$2-W(p) = \frac{k}{Tp+1};$$

$$3-W(p) = \frac{k(Tp+1)}{p};$$

$$4-W(p) = Tp+1.$$

19. Передаточная функция идеального интегрирующего звена:

$$1 - W(p) = \frac{k}{p};$$

$$2 - W(p) = \frac{k(T_1 p + 1)}{(T_2 p + 1)};$$

$$3 - W(p) = Tp;$$

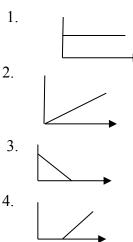
$$4 - W(p) = \frac{Tp}{T_{n+1}}.$$

20. Передаточная функция идеального дифференциального звена:

$$\begin{split} 1 - W(p) &= \frac{k}{p}; \\ 2 - W(p) &= \frac{k(T_1 p + 1)}{(T_2 p + 1)} \\ 3 - W(p) &= Tp; \\ 4 - W(p) &= \frac{Tp}{Tp + 1}. \end{split}$$

- 21. Что такое звено в структурной схеме САУ?
- 22. Основные типы соединений звеньев:
 - 1. последовательное, параллельное и с обратными связями
 - 2.последовательное, параллельное
 - 3.последовательное и с обратными связями
 - 4. параллельное и с обратными связями
- 23. Начертите последовательное соединения звеньев в структурной схеме САУ.
- 24. Начертите параллельное соединение звеньев в структурной схеме САУ.
- 25. Дана отрицательная обратная связь. Тогда:
 - 1. выходная величина регулятора вычитается из входной величины объекта
 - 2. выходная величина регулятора складывается с входной величиной объекта
 - 3. выходная величина регулятора не учитывается
 - 4.нет правильного ответа
- 26. Система с положительной обратной связью имеет передаточную функцию:

1.
$$1^{W(p) = \frac{W_{o\delta}(p)}{1 - W_{o\delta}(p) \cdot W_p(p)}}$$


2.
$$W(p) = W_{o\delta}(p)$$

- 3. $W(p)=1/W_{o\delta}(p)$
- 4. Нет правильного ответа.
- 27. Опишите зависимость амплитудно-частотной характеристики.
- 28. Опишите зависимость фазо-частотной характеристики.
- 29. Кривая, соединяющая концы вектора переменной величины (скорости, ускорения, силы), отложенного в разные моменты времени от одной точки, называется:
 - 1. Годограф.
 - 2. Вектор.

- 3. Отрезок.
- 4. Луч.
- 30. Как выглядит комплексная координатная плоскость?
- 31. Что значит усилительное звено автоматики?
- 32. Какое звено называют интегральным:
 - 1. Интегральным называется такое звено, выходная величина которого пропорциональна интегралу по времени от входной величины.
 - 2. Звено описывается следующим дифференциальным уравнением.
 - 3. Звено, выходная величина которого пропорциональна скорости изменения входной величины.
 - 4. Звено, которое на выходе воспроизводит входной сигнал без искажений, однако с некоторым постоянным запаздыванием.
- 33. Звено, в котором выходная величина воспроизводит без искажений и запаздываний входную величину, называется:
 - 1. Безынерционным.
 - 2. Инерционным.
 - 3. Передаточным.
 - 4. Холостым.
- 34. Передаточная функция может быть определена по формуле:
 - 1. $W(p)=W_{BMX}/W_{BXOJI}$.
 - 2. $W(p)=W_{BMX} \cdot W_{BXOJL}$
 - 3. $W(p)=W_{BMX}+W_{BXOJ.}$
 - 4. $W(p)=W_{BMX}-W_{BXOJ.}$
- 35. Звенья в САУ могут соединяться в виде обратной связи. Какая она может быть:
 - 1. Положительная и отрицательная.
 - 2. Положительная.
 - 3. Отрицательная.
 - 4. Прямая.
- 36. Постройте график зависимости $y=2x^2$.
- 37. Напишите уравнение прямой зависимости силы упругости пружины от удлинения, если коэффициент жесткости равен 100 H/m.
- 38. Начертите последовательное соединение трех звеньев.
- 39. Начертите параллельное соединение двух звеньев и к ним добавьте одно звено последовательно.
- 40. Начертите звено, охваченное положительной обратной связью.
- 41. Даны два звена с передаточными функциями W_1 , W_2 , соединенные последовательно. Найдите эквивалентную передаточную функцию.
- 42. Даны два звена с передаточными функциями W_1 , W_2 , соединенные параллельно. Найдите их эквивалентную передаточную функцию.

43. Получить передаточную функцию для уравнения $\frac{d^2x}{dt^2} + x = 0$ 44. Найти передаточную функцию для уравнения $\frac{d^2x}{dt^2} + x = 0$

- 44. Найти передаточную функцию последовательно соединенных звеньев с передаточными функциями 8p и 0.01/(p+1):
 - 1. $0.01/(8p^2+p)$
 - 2. 0.08p/(p+1)
 - 3. 0.08p(p+1)
 - 4. 0.08p+1
- 45. Изобразите логарифмическую частотную характеристику для безынерционного звена:

46.3венья САУ соединены последовательно и имеют передаточные функции $W_1=k_1p$ и $W_2=k_2/(Tp+1)$. Найдите эквивалентную передаточную функцию, если $k_1=0,25, k_2=0,1, T=0,64$.

47. Звенья САУ соединены параллельно и имеют передаточные функции $W_1=k_1p$ и $W_2=k_2/p$. Найдите эквивалентную передаточную функцию, если $k_1=0,2, k_2=0,3$.

- 1. $(0,2p^2+0,3)/p$.
- 2. (0,2p+0,3)/p.
- 3. $0.2p^2+0.3$.
- 4. $0.2p^2+0.3/p$.

48. Начертите структурную схему линейной системы с единичной положительной обратной связью, сумматором и одним звеном с передаточной функцией W.

49. Звенья САУ соединены параллельно и имеют передаточные функции $W_1=k_1p$ и $W_2=k_2/(Tp+1)$. Начертите структурную схему.

50. Звенья САУ соединены через положительную обратную связь и имеют передаточные функции W_1 = k_1 p и W_2 = k_2 /(Tp+1). Начертите структурную схему.

ОПК-11

- 1. Понятие объекта управления.
- 2. Классификация воздействий на объект управления.
- 3. Что такое структурная схема САУ?
- 4. Основные типы соединений звеньев:
 - 1. последовательное, параллельное и с обратными связями
 - 2. последовательное, параллельное
 - 3. последовательное и с обратными связями
 - 4. параллельное и с обратными связями
- 5. Как рассчитывается общая передаточная функция для последовательного соединения звеньев?
- 6. Как рассчитывается общая передаточная функция для параллельного соединения звеньев?
- 7. Дана отрицательная обратная связь. Тогда:
 - 1. выходная величина регулятора вычитается из входной величины объекта
 - 2. выходная величина регулятора складывается с входной величиной объекта
 - 3. выходная величина регулятора не учитывается
 - 4. нет правильного ответа
- 8. Система с положительной обратной связью имеет передаточную функцию:

$$W(p) = \frac{W_{o\delta}(p)}{1 - W_{o\delta}(p) \cdot W_p(p)}.$$

- 1. 2. 1
- 3. -1
- 5. Нет правильного ответа.
- 9. Виды частотных характеристик.
- 10. Понятие логарифмических частотных характеристик.

- 11. Принцип построения ЛАЧХ.
- 12. Перечислите некоторые виды звеньев автоматики.
- 13. Какое звено называют интегральным:
 - 1. Интегральным называется такое звено, выходная величина которого пропорциональна интегралу по времени от входной величины.
 - 2. Звено описывается следующим дифференциальным уравнением.
 - 3. Звено, выходная величина которого пропорциональна скорости изменения входной величины.
 - 4. Звено, которое на выходе воспроизводит входной сигнал без искажений, однако с некоторым постоянным запаздыванием.
- 14. Приведите правила преобразования структурных схем.
- 15. Понятие звена в структурной схеме автоматического управления.
- 16. Опишите принцип обратной связи в системе управления.
- 17. Опишите принцип управления по возмущению.
- 18. Охарактеризуйте статические характеристики САУ.
- 19. Охарактеризуйте динамические характеристики САУ.
- 20. В астатической системе по отношению к управляемому воздействию, при воздействии, стремящемся к установившемуся значению, ошибка стремится:
 - 1. K 0
 - 2. К бесконечности
 - 3. К минимуму
 - 4. К максимуму
- 21. Что такое переходной процесс в САУ?
- 22. Что должна показывать математическая модель для САУ?
- 23. Какое математическое преобразование используется для определения передаточной функции по дифференциальному уравнению?
- 24. Как по известной передаточной функции W(p) определяется переходная характеристика?
- 25. Как по известной передаточной функции W(p) определяется весовая функция?
- 26. Как по известной весовой функции w(t) определить переходную характеристику?
- 27. Как формально определяется сигнал «единичный скачок»:
 - 1. При времени больше нуля равен1
 - 2. При времени равном нулю равент1
 - 3. Всегда равен 1
 - 4. Нет правильного ответа
- 28. Что может включать в себя разомкнутая САУ?
- 29. Опишите объект управления в САУ.
- 30. Опишите измерительное устройство в САУ.
- 31. Опишите задающее устройство в САУ.
- 32. Что означает устойчивость в САУ?
- 33. Причины неустойчивости САУ:
 - 1. Неверно работает обратная связь
 - 2. Инерционность элементов контура
 - 3. Инерционность элементов контура, неверно работает обратная связь
 - 4. Нет правильного ответа
- 34. Что значит «система автоматического управления находится на границе устойчивости»?
- 35. Опишите критерий устойчивости САУ по Гурвицу.
- 36. Даны частотная передаточная функция: $W(j\omega) = k$ и амплитудно-частотная функция: $A(\omega) = k$,

Найти логарифмические частотные характеристики:

```
1.

L(\omega) = 20 \lg A(\omega) = 20 \lg k;
\varphi(\omega) = arctgV(\omega)/U(\omega) = 0.
2.

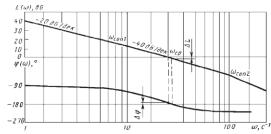
L(\omega) = 20 \lg A(\omega) = k;
```

$$\varphi(\omega) = arctgV(\omega)/U(\omega) = 0.$$

3.
$$L(\omega) = 20 \lg A(\omega) = 20 \lg k$$
;

$$\varphi(\omega) = arctgV(\omega)/U(\omega) = \pi$$
.

4.
$$L(\omega) = 20 \lg A(\omega) = 0$$
;

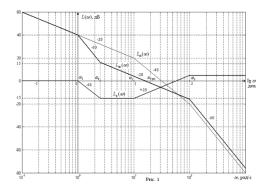

$$\varphi(\omega) = arctgV(\omega)/U(\omega) = 0.$$

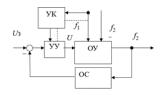
37. Используя устойчива САУ, критерий Гурвица, определить, ЛИ описанная характеристическим уравнением третьего порядка:

$$a_0p^3 + a_1p^2 + a_2p + a_3 = 0,$$

где
$$a_0 = 18$$
; $a_1 = 0.3$; $a_2 = 14$; $a_3 = 1$.

- 1. Не устойчива.
- 2. Устойчива.
- 3. Решение задачи не существует.
- 4. Критерий Гурвица не подходит для данной задачи.
 - 38. Начертите схематично амплитудно-фазовую характеристику разомкнутых устойчивой системы.
 - 39. Чему равна вторая сопрягающая частота на приведенной ниже зависимости.


- 1. 2
- 2. 0
- 3. 100
- 4. 10
- 40. Начертить структурную схему линейной системы с единичной положительной обратной связью, сумматором и одним звеном с передаточной функцией W.
- 41. Опишите работу системы по данному рисунку.


- 42. Если САУ в замкнутом состоянии устойчива, то:
 - 1. На частоте среза ЛΦХ располагается выше линии π

 - 3. На частоте среза ЛФХ идет по нулю
 - 4. На частоте среза ЛФХ идет линии π
- 43. Дана передаточная функция $W(p) = \frac{10}{0.1p+1}$ 10 . Определите коэффициент усиления.

- $\overline{0,1p+1}$. Определите постоянную времени. 44. Дана передаточная функция
- 45. Изобразите ЛАЧХ передаточной функции W=k.
- 46. По данному графику определите частоту среза.

47. Опишите работу данной схемы с перечислением входящих элементов.

- 48. Начертите последовательное соединения двух звеньев и напишите эквивалентную передаточную функцию.
- 49. Начертите параллельное соединения двух звеньев и напишите эквивалентную передаточную функцию.
- 50. Модуль амплитудно-частотная функция вычисляется по формуле

$$A(\omega) = |W(j\omega)| = \sqrt{U^2(\omega) + V^2(\omega)},$$

Вычислите модуль функции, если действительная часть равна 0,3, мнимая – 0,4.

ПК-3

1. Какие существуют критерии устойчивости:

1.по Гурвицу, Михайлову, Найквисту, частотные

2.по Гурвицу, Михайлову, Найквисту

3по Гурвицу, Михайлову

4. частотные

- 2. Что такое запас устойчивости САУ по фазе?
- 3. Основные показатели процесса управления:
 - 1. Статическое отклонение, время регулирования, максимальное значение управляемой величины
 - 2. время регулирования, максимальное значение управляемой величины
 - 3. Статическое отклонение, время регулирования
 - 4. время регулирования
- 4. Что значит установившийся режим работы САУ?
- 5. Понятие точности отработки воздействий в САУ.
- 6. Что нужно сделать, что уменьшить установившуюся ошибку:
 - 1. Увеличить коэффициент усиления разомкнутой системы
 - 2. Увеличить обратную связь
 - 3. Уменьшить количество звеньев в САУ
 - 4. Нет правильного ответа
- 7. Расшифруйте понятие П-регулятора.
- 8. Расшифруйте понятие И-регулятора.
- 9. Расшифруйте понятие Д-регулятора.
- 10. Опишите оценку качества регулирования в САУ.
- 11. Назначение синтеза САУ.

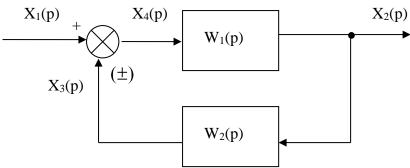
- 12. Как можно осуществить коррекцию динамических свойств САУ:
 - 1. Последовательное включение корректирующих устройство в основную цепь
 - 2. Включение интегрирующего звена
 - 3. Последовательное включение корректирующих устройство в обратную связь
 - 4. Все перечисленные выше пункты
- 13. Опишите нелинейные САУ.
- 14. Показатели нелинейности САУ:
 - 1. Симметрия, гладкость, однозначность и неоднозначность
 - 2. Симметрия, гладкость, однозначность
 - 3. Симметрия, гладкость
 - 4. Симметрия
- 15. Отметьте все виды нелинейных звеньев в САУ:
 - 1. Релейные
 - 2. С кусочно-линейной характеристикой
 - 3. С криволинейной характеристикой
 - 4. Все выше перечисленные пункты
- 16. Опишите общие моменты составления уравнений для нелинейных САУ.
- 17. Подход к устойчивости нелинейных САУ по Ляпунову:
 - 1. В положении равновесия система имеет минимум потенциальной энергии
 - 2. В положении равновесия система имеет максимум потенциальной энергии
 - 3. В положении равновесия система имеет ноль по потенциальной энергии
 - 4. В положении равновесия система имеет минимум кинетической энергии
- 18. Что такое дискретная САУ?
- 19. Опишите реле по принципу «открыто-закрыто».
- 20. Как определяется логарифмическая амплитудно-частотная характеристика?
- 21. В каких единицах измеряется наклон ЛАЧХ?
- 22. При каких корнях характеристического уравнения замкнутая система автоматического регулирования устойчива?
- 23. Критерий Гурвица относится к алгебраическим или частотным критериям устойчивости?
- 24. Как обозначается суммирующее устройство в структурной схеме САУ?
- 25. Опишите алгоритм построения структурной схемы САУ.
- 26. Что значит разомкнутая САУ?
- 27. Какие величины могут содержать дифференциальные уравнения для САУ?
- 28. Опишите входные воздействия в САУ.
- 29. Какие величины могут в ходить в передаточную функцию?
- 30. Приведите пример из техники с САУ.
- 31. Осуществляются ли переносы некоторых звеньев и элементов в структурной схеме?
- 32. Какие бывают частотные характеристики в САУ:
 - 1. амплитудно-фазовая
 - 2. фазо-частотная, амплитудно-фазовая
 - 3. амплитудно-частотная, амплитудно-фазовая
 - 4. амплитудно-частотная, фазо-частотная, амплитудно-фазовая
- 33. Безынерционное звено W(p)=k. Найти $A\Phi X$:
 - 1. $W(j\omega)=k$,
 - 2. $W(j\omega)=1$,
 - 3. $W(j\omega)=k+1$,
 - 4. $W(j\omega)=k-1$.
- 34. Безынерционное звено W(p)=k. Найти AЧX:
 - 1. $A(\omega)=k$,
 - 2. $A(\omega)=1$,
 - 3. $A(\omega)=k+1$,
 - 4. $A(\omega)=k-1$.
- 35. Безынерционное звено W(p)=k. Найти Φ ЧХ:

- 1. $\varphi(\omega)=0$.
- 2. $\varphi(\omega)=1$.
- 3. $\varphi(\omega)=\pi$.
- 4. $\varphi(\omega) = -\pi$.

$$W(p) = \frac{(p+1)(0.5p+1)}{p(p+1)^2}$$
 . Определите характеристический

36. Передаточная функция имеет вид многочлен.

- . Определите характеристический
- 37. Определите значения нулей передаточной функции $W(p) = \frac{1}{(p+1)(0)}$
- 38. Какое звено имеет наименьшее время регулирования


1.
$$W_1(p) = \frac{6}{p+1}$$

$$2. \quad W_2(p) = \frac{11}{0.2p+1}$$

$$W_2(p) = \frac{11}{0.1p+1}$$

$$W_2(p) = \frac{11}{0.3p+1}$$

39. Определите передаточную функцию замкнутой системы $W(p) = X_2(p)/X_1(p)$.

40. Отметьте участок на графике, который показывает переходной процесс:

- 41. Пусть допустимая статическая ошибка воспроизведения скачка задания не должна превышать значения 0,02. Для этого необходимо иметь полный коэффициент усиления системы не менее
 - 1. 49
 - 2. 0,02
 - 3. 2
 - 4. 100
- 42. Напишите эквивалентную передаточную функцию.

a)
$$V_1$$
 V_0
 $W_2(p)$
 V_2
 $W_3(p)$
 V_2
 V_3
 V_4
 V_4
 V_5
 V_7
 V_8
 V_8

43. Напишите эквивалентную передаточную функцию.

$$Y_0$$
 ΔY
 $W_{0,c}(p)$
 Y
 $W_{0,c}(p)$

44. Начертите или опишите перенос сумматора влево

$$Y_0$$
 W_1 Y_1 Y_2 Y_2 Y_2

45. Поменяйте узлы местами

46. Поменяйте сумматоры местами.

$$Y_1$$
 Z_2 Z_1 Y_2

47. Модуль амплитудно-частотная функция вычисляется по формуле

$$A(\omega) = |W(j\omega)| = \sqrt{U^2(\omega) + V^2(\omega)},$$

Вычислите функцию, если действительная часть равна 0,3, мнимая – 0,4.

48. Согласно таблицы 1 построить АЧХ.

Таблица 1.

ω, c ⁻¹	A (w)	φ (ω)	$U(\omega)$	V(\omega)
0	1,00	0	1,0000	0
1	0,99	-5°40′	0,9900	-0,10
5	0,89	-26°30′	0,8000	-0,48
10	0,71	-45°	0,5000	-0,50
20	0,50	-63°30′	0,2000	-0,40
40	0,25	-76°	0,0600	-0,23
100	0,10	-84°10′	0,0100	-0,10
1000	0,01	-89°20′	0,0001	-0,01
∞	0	-90°	0	0

- 49. Согласно таблицы 1 построить ФЧХ.
- 50. Согласно таблицы 1 построить АФЧХ.

Оператор ЭДО ООО "Компания "Тензор" ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ ПОДПИСАНО ФГБОУ ВО "РГРТУ", РГРТУ, Ленков Михаил 03.07.25 15:25 (MSK) Простая подпись ЗАВЕДУЮЩИМ Владимирович, Заведующий кафедрой АИТП КАФЕДРЫ ПОДПИСАНО ФГБОУ ВО "РГРТУ", РГРТУ, Ленков Михаил 03.07.25 15:25 (MSK) Простая подпись ЗАВЕДУЮЩИМ ВЫПУСКАЮЩЕЙ Владимирович, Заведующий кафедрой АИТП КАФЕДРЫ