МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет имени В.Ф. Уткина»

КАФЕДРА РАДИОТЕХНИЧЕСКИХ УСТРОЙСТВ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

ФТД.В.03

«Сквозное проектирование радиотехнических устройств»

шифр

название дисциплины

Направление подготовки **11.03.01 Радиотехника**

Шифр и название направления подготовки

Направленность (профиль) подготовки Радиофотоника Беспроводные технологии в информационных системах

Квалификация выпускника — бакалавр Бакалавр / специалист

Формы обучения — очная очная / заочная / очно-заочная

Рязань

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации

Основная задача — обеспечить оценку уровня сформированности компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения лабораторных работ. При оценивании результатов освоения материалов лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением теоретического зачета. Форма проведения теоретического зачета — устный ответ обучающегося на вопросы из утвержденного списка вопросов. В процессе подготовки к устному ответу экзаменуемый может составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки и т.п.

Перечень компетенций

Коды	Содержание компетенций	
компетенции		
ПК-5	Способен проводить расчеты для разработки функциональных узлов	
	бортовой аппаратуры космических аппаратов	

Паспорт фонда оценочных средств по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	Пакеты прикладных программ и их применение: - MathCad, MATLAB – расчет схем; - MC, EWB – моделирование (анализ и синтез) схем; - Turbo Assembler, Image Craft C – создание программ для микроконтроллеров;	ПК-5	Зачет

	<u></u>	T	
	- AVR Studio, ADSim8xx – отладка		
	микроконтроллерных устройств;		
	- PCAD, Design Center – конструирование		
	печатных плат;		
	- Lab View – создание виртуальных		
	приборов.		
2	Платформа Pspice и оболочка MC.	ПК-5	Зачет
	Основные особенности, конкретные		
	возможности. Графический ввод схем.		
3	Основные методы анализа. Особенности	ПК-5	Зачет
	анализа во временной и частотной области,		
	по постоянному току. Задание пределов		
	моделирования и запись математических		
	выражений. Просмотр и обработка		
	результатов.		
4	Моделирование источников сигналов и	ПК-5	Зачет
	колебаний. Управляемые источники,		
	функциональные источники,		
	преобразование Лапласа и Z-		
	преобразование.		
5	Математические модели активных и	ПК-5	Зачет
	пассивных компонентов электронных схем.		
	Зависимости от температуры. Шумовые		
	характеристики.		
6	Создание и редактирование моделей	ПК-5	Зачет
	компонентов и их графических образов.		
	Создание макромоделей и их		
	использование.		
7	Моделирование схем с использованием	ПК-5	Зачет
	многовариантного анализа и метода		
	Монте-Карло.		
8	Источники цифровых сигналов. Модели	ПК-5	Зачет
	цифровых компонентов. Моделирование		34.101
	цифровых схем.		
	цифровых слем.	l	

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в курсовом проекте, в результатах практических занятий.
 - 5) Использование дополнительной литературы при подготовке ответов.

Шкала оценки сформированности компетенций

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме **теоретического зачета**, используется оценочная шкала «зачтено – не зачетено»:

Оценка «зачтено» выставляется обучающемуся, который прочно усвоил предусмотренный программой материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и лабораторной работы, систематическая активная работа на занятиях.

Оценка «не зачтено» выставляется обучающемуся, который не справился с 50% вопросов и заданий. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях элементов курса и использования предметной терминологии у обучающегося нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

Типовые контрольные задания или иные материалы

Вопросы к зачету

- 1. Пакеты прикладных программ и их применение в деятельности инженераразработчика: MathCad, MATLAB.
- 2. Пакеты прикладных программ и их применение в деятельности инженераразработчика: MC, EWB и подобные.
- 3. Пакеты прикладных программ и их применение в деятельности инженераразработчика: Turbo Assembler, Image Craft C, GCC, Keil и подобные.
- 4. Пакеты прикладных программ и их применение в деятельности инженераразработчика: AVR Studio, ADSim8xx и подобные.
- 5. Пакеты прикладных программ и их применение в деятельности инженераразработчика: PCAD, Design Center, Altium Designer и подобные.
- 6. Пакеты прикладных программ и их применение в деятельности инженераразработчика: Lab View и подобные.
- 7. Возможности современных методов моделирования аналоговых и цифровых радиотехнических устройств на ПЭВМ.
- 8. Платформа Pspice и оболочка Micro Cap. Основные особенности, конкретные возможности. Графический ввод схем.
- 9. Основные вычислительные возможности ядра PSpice. Текстовый ввод и импорт схем в PSpice. Місто Сар как графическая оболочка; собственные возможности версий программы MC5-MC7-MC8-MC9.
- 10. Основные методы анализа. Особенности анализа во временной и частотной области, по постоянному току. Transient Analysis как универсальный метод анализа.
- 11. Задание пределов моделирования и запись математических выражений. Просмотр и обработка результатов.
- 12. Моделирование источников сигналов и колебаний. Управляемые источники, функциональные источники, преобразование Лапласа и Z-преобразование. Создание моделей произвольных нелинейных элементов.

- 13. Моделирование фильтров с использованием H(p) и H(z), а также с помощью табличного представления AЧX и ФЧX.
- 14. Математические модели активных и пассивных компонентов электронных схем.
- 15. Зависимости параметров моделей электронных компонентов от температуры. Шумовые характеристики.
- 16. Математические модели резистора, конденсатора, индуктивности, трансформатора и элемента индуктивной связи, аналоговой линии задержки.
- 17. Математические модели полупроводникового диода, стабилитрона, биполярного и полевого транзисторов, операционного усилителя.
- 18. Создание и редактирование моделей компонентов и их графических образов.
- 19. Создание макромоделей и их использование.
- 20. Импорт схем в текстовом формате из технической документации фирмпроизводителей элементной базы.
- 21. Моделирование схем с использованием многовариантного анализа и метода Монте-Карло.
- 22. Различные виды и возможности многовариантного анализа схем.
- 23. Логические уровни и их представление в МС.
- 24. Источники цифровых сигналов. Правила записи в моделях источников цифровых сигналов.
- 25. Модели цифровых компонентов. Моделирование цифровых схем.
- 26. Аналогово-цифровые и цифро-аналоговые интерфейсы. Модели ЦАП и АЦП.
- 27. Моделирование аналогово-цифровых электронных схем. Редактирование цифровых и цифро-аналоговых компонентов.

Возможные темы заданий для самостоятельной работы

$N_{\underline{0}}$	Тема	Параметры
1	Усилитель 3Ч однокаскадный на биполярном транзисторе	Ku=15
2	Усилитель постоянного тока на полевом транзисторе	Ku=10
3	Усилитель ПЧ на биполярном транзисторе	Ku=10, f=1 MHz
4	Входной усилитель ВЧ радиоприемника на биполярн. транз.	Ku=5, f=5 MHz
5	Выходной каскад усилителя мощности передатчика на	Kp=10, f=10
	биполярном транзисторе	MHz
6	Каскодный усилитель ВЧ	Ku=50, f=2 MHz
7	Мультивибратор на операционном усилителе	f = 10 Hz
8	Кварцевый генератор на полевом транзисторе	f = 10 MHz
9	Автогенератор LC на биполярном транзисторе	f = 7 MHz
10	Автогенератор НЧ с мостом Вина	f = 1000 Hz
11	Полосовой фильтр на операционных усилителях	f = 1015 kHz
12	Амплитудный модулятор на биполярном транзисторе	произвольно
13	Режекторный фильтр на операционных усилителях	f = 3 kHz
14	ФНЧ на операционных усилителях	f = 1 kHz
15	Амплитудный модулятор на полевом транзисторе	произвольно
16	Усилитель 3Ч однокаскадный на операционном усилителе	Ku=15
17	Усилитель постоянного тока на операционном усилителе	Ku=65
18	Усилитель ПЧ на полевом транзисторе	Ku=10 f=1 MHz
19	Входной усилитель ВЧ радиоприемника на полевом транз.	Ku=20 f=2 MHz
20	ФВЧ на операционных усилителях	f = 32 kHz
21	Каскодный усилитель ВЧ	f = 3MHz Ku=15
22	Мультивибратор на интервальном таймере NE555	f = 110 Hz
23	Кварцевый генератор на биполярном транзисторе	f = 333 kHz
24	Автогенератор LC на полевом транзисторе	f = 3000 kHz

25	Автогенератор НЧ с мостом Вина	f = 23 kHz
26	Полосовой фильтр на операционных усилителях	f = 34 kHz
27	Транзисторный умножитель частоты ВЧ колебания	f = 3MHz, Kf=2

Оценочные материалы к рабочей программе «Сквозное проектирование радиотехнических устройств» составлены в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению 11.03.01 "Радиотехника" (квалификация выпускника — бакалавр, форма обучения — очная).

Программу составил

к.т.н., доц., доцент кафедры

радиотехнических устройств

Е.В. Васильев

Заведующий кафедрой

радиотехнических устройств,

д.т.н., профессор

Ю.Н. Паршин