МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет»

КАФЕДРА ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНОЙ И БИОМЕДИЦИНСКОЙ ТЕХНИКИ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Аналитические методы и приборы экологического контроля»

Направление подготовки

12.03.04 Биотехнические системы и технологии ОПОП академического бакалавриата «Биотехнические системы и технологии»

Квалификация (степень) выпускника – бакалавр Форма обучения – очная Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий лабораторных работах. При оценивании результатов освоения лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена.

Форма проведения экзамена — письменный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса и одна задача. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения экзаменационной оценки.

Паспорт фонда оценочных средств по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	Аналитические методы контроля.	ПК-1.3	Экзамен
2	Методы и приборы для анализа газов.	ПК-1.3	Экзамен, лабораторная работа
3	Методы и приборы для анализа жидкостей.	ПК-1.3	Экзамен, лабораторная работа
4	Методы расчета устройств отбора и подготовки пробы.	ПК-1.3	Экзамен
5	Экологические фотометрические приборы и системы.	ПК-1.3	Экзамен, лабораторная работа
6	Экологические приборы для хроматографического анализа.	ПК-1.3	Экзамен

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам.
 - 5) Использование дополнительной литературы при подготовке ответов.

Шкала оценки сформированности компетенций

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме экзамена, используется пятибалльная оценочная шкала:

«Отлично» заслуживает обучающийся, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется обучающимся, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает обучающийся, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется обучающимся, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает обучающийся, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется обучающимся, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится обучающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Типовые контрольные задания или иные материалы

Вопросы к лабораторным занятиям по дисциплине

- 1) Какие области электромагнитного излучения используются в аналитической химии?
- 2) Как связаны между собой величины пропускания и оптической плотности?
- 3) Что показывает молярный коэффициент поглощения?
- 4) Какая зависимость называется спектром поглощения? Какая область спектра является оптимальной для проведения анализа?
- 5) Какие методы определения концентраций целесообразно применять при серийных фотоометрических анализах?

- 6) Какие источники излучения используются в фотоэлектроколориметре и в атомноабсорбционном спектрометре?
- 7) Как производится идентификация спектральных линий при качественном атомно-эмиссионном спектральном анализе?
 - 8) Что называется спектральной линией?
 - 9) Что называется аналитической парой линий?
 - 10) Для определения каких параметров предназначены квантометры?

Вопросы к экзамену по дисциплине

- 1) Основные понятия и классификация газоанализаторов.
- 2) Общие и конструктивные требования к газоанализаторам.
- 3) Обобщенная структурная схема термокондуктометрическго газоанализатора.
- 4) Обобщенная схема термохимического газоанализатора.
- 5) Устройства отбора пробы.
- 6) Магнитные газоанализаторы.
- 7) Оптические газоанализаторы.
- 8) Электрохимические газоанализаторы.
- 9) Ионизационный газоанализатор.
- 10) Методы анализа жидкостей.
- 11) Принципы построения анализатора водородного показателя.
- 12) Принципы построения полярографа.
- 13) Принципы построения анализаторов дымности.
- 14) Приборы для хроматографического анализа.
- 15) Оценка аналитической надежности методов экологического контроля.
- 16) Способы выражения концентрации вещества.
- 17) Методы расчета динамических характеристик анализаторов.
- 18) Емкостное запаздывание.
- 19) Транспортное запаздывание.
- 20) Краткие основы фотометрии.
- 21) Основные источники погрешностей анализаторов.
- 22) Анализаторы для атомно-абсорбционного анализа.
- 23) Методы электрической и оптической компенсации газоанализаторов.
- 24) Аналитическая аппаратура для экологических исследований.
- 25) Варианты оптических схем спектрофотометров и колориметров.
- 26) Основные методики градуировки анализаторов.
- 27) Методы градуировочного графика, молярного коэффициента поглощения, добавок.
- 28) Основные требования к фотоприемникам.
- 29) Обобщенная схема измерительного канала газоанализатора.
- 30) Температурная коррекция показаний анализатора.
- 31) Вопросы техники безопасности при проектировании анализаторов.
- 32) Основные методы автоматизированного мониторинга атмосферного воздуха.

Вопросы для базовых тестовых заданий по курсу «Аналитические методы и приборы экологического контроля»

1. Основные параметры и характеристики анализаторов

- 1. Анализатор это автоматическое устройство, предназначенное для:
 - 1. определения количественного и качественного состава вещества;
 - 2. анализа мочи;
 - 3. взятия пробы крови из вены или из пальца;

- 4. подготовки пробы к процессам измерения.
- 2. Проба это:
 - 1. весовая концентрация драгоценных металлов в составе деталей данного прибора или устройства;
 - 2. минимальное количество вещества, необходимое для анализа;
 - 3. раствор с известной концентрацией примеси, используемый для построения градуировочного графика;
 - 4. количество твердого вещества, растворенного в жидкости.
- 3. Интерференция результатов анализа это:
 - 1. сопоставление результатов анализа, полученных различными методами;
 - 2. сравнение результатов анализа с эталонным методом;
 - 3. разброс результатов анализа относительно среднего значения;
 - 4. влияние лекарственных препаратов на результаты анализа.
- 4. Транспортное запаздывание это:
 - 1. время, отсчитываемое от момента начала анализа до появления устойчивых изменений показаний анализатора;
 - 2. время проведения одного анализа;
 - 3. время, необходимое для доставки пробы от места отбора до входа в корпус анализатора;
 - 4. интервал времени, соответствующий появлению пика газа-носителя на хроматограмме.
- 5. Постоянной времени анализатора называется время, которое соответствует показанию анализатора от установившейся величины в процентах, равное:
 - 1. 50%;
 - 2. 63,2%;
 - 3. 75%;
 - 4. 100%.
- 6. Время установления (t_v) связано с постоянной времени анализатора (τ) соотношением:
 - 1. $t_v = 4 \tau$;
 - 2. $t_v = 5 \tau$;
 - 3. $t_v = 6\tau$;
 - 4. t_v не зависит от τ .
- 7. Концентратомер это:
 - 1. приспособление для построения градуировочного графика;
 - 2. приспособление для определения площади хроматографического пика;
 - 3. электронный блок хроматографа, предназначенный для расчета концентрации компонента;
 - 4. прибор для определения природы и состава вещества, находящегося в жидкой фазе.
- 8. Весовая концентрация газа с увеличением давления и постоянной температуре:
 - 1. остается постоянной;
 - 2. уменьшается;
 - 3. увеличивается;
 - 4. сначала увеличивается, потом уменьшается.
- 9. Объемная концентрация газа при условии идеального поведения газа:
- 12. увеличивается с давлением, уменьшается с температурой;
- 13. уменьшается с температурой, увеличивается с давлением;

- 14. увеличивается как с температурой, так и с давлением;
- 15. не меняется с давлением и температурой.
- 10. Что такое градуировка анализатора:
 - 1. установление соответствия между показаниями анализатора и концентрацией определяемого компонента;
 - 2. установление нулевого напряжения на выходе анализатора;
 - 3. установление соответствия между входным током (напряжением) и выходным напряжением (током) анализатора;
 - 4. установление соответствия между показаниями анализатора и температурой пробы.

2. Газоанализаторы

- 1. Как зависят показания анализатора, основанного на измерении теплопроводности от давления газовой смеси:
 - 1. увеличиваются с ростом давления;
 - 2. остаются постоянными;
 - 3. уменьшаются с ростом давления;
 - 4. имеют максимумы и минимумы.
- 2. Как зависят показания анализатора, основанного на измерении теплопроводности от колебаний расхода газовой смеси:
 - 1. не зависят в случае диффузионных камер;
 - 2. не зависят в случае проточных камер;
 - 3. практически не зависят;
 - 4. увеличиваются с уменьшением расхода смеси.
- 3. Мерой содержания кислорода в анализаторе, основанном на термомагнитном принципе является:
 - 1. величина термомагнитной конвекции;
 - 2. напряженность магнитного поля;
 - 3. температура газа;
 - 4. давление газа.
- 4. Как известно показания термомагнитного анализатора кислорода зависят от температуры. Чему равна ошибка измерения концентрации при изменении температуры газа в пределах $\pm~10~{\rm K}$.
 - 1. $\pm 10\%$;
 - 2. $\pm 20 \%$;
 - 3. $\pm 5\%$;
 - 4. $\pm 1 \%$.
- 5. Какой из приведенных ниже анализаторов можно отнести к категории «недопускающих наклона корпуса относительно уровня земли»:
 - 1. оптикоакустический газоанализатор;
 - 2. термокондуктометрический газоанализатор;
 - 3. дымомер;
 - 4. термомагнитный газоанализатор.

3. Оптические методы

- 1. Коэффициент пропускания света при фотометрических методах анализа, соответствующий минимуму относительной погрешности измерений, равен:
 - 1. 0,22;
 - 2. 1.0;
 - 3. 0,37;
 - 4. зависит от температуры и давления пробы.
- 2. Метод дифференциальной фотометрии основан на сравнении двух интенсивностей света:
 - 1. прошедших через анализируемый раствор неизвестной концентрации и окрашенный раствор известной концентрации, имеющий меньшую оптическую плотность;
 - 2. прошедших через анализируемый раствор неизвестной концентрации и растворитель;
 - 3. прошедших через два окрашенных раствора известной концентрации;
 - 4. прошедших последовательно через два раствора сравнения.
- 3. Инфракрасный газоанализатор имеет следующее существенное ограничение:
 - 1. 10^6 c;
 - 2. 10^3 c;
 - 3. $10^{-6} 10^{-10}$ c;
 - 4. 10⁻¹⁵ c.
- 4. Какой из приведенных ниже методов фотометрического анализа имеет минимальную погрешность измерения:
 - 1. метод молярного коэффициента;
 - 2. метод добавок;
 - 3. метод градуировочного графика;
 - 4. погрешность всех методов примерно одинакова.
- 5. Фильтровая камера инфракрасного газоанализатора предназначена:
 - 1. для ослабления влияния колебаний атмосферного давления, заполняется воздухом;
 - 2. для ослабления влияния неизмеряемых компонентов, заполняется смесями газов содержащих эти компоненты;
 - 3. для повышения чувствительности анализа, заполняется газом, концентрация которого определяется;
 - 4. для ослабления влияния температуры окружающей среды, заполняется азотом.
- 6. Каким газом заполнена мерная камера оптикоакустического газоанализатора:
 - 1. азотом;
 - 2. воздухом;
 - 3. газом, концентрация которого определяется;
 - 4. водородом.
- 7. Оптикоакустический метод газового анализа основан на измерении:
 - 1. акустических колебаний воздуха при засветке монохроматическим светом заданной длины волны;
 - 2. колебаний атмосферного давления при постоянной температуре и освещенности;
 - 3. температуры газа при постоянном давлении и освещенности;
 - 4. колебаний температуры и давления газа с помощью измерительного конденсатора или микрофона.
- 8. Что является мерой концентрации СО₂ в инфракрасном газоанализаторе:
 - 1. температура газа;
 - 2. давление газа;

- 3. амплитуда колебаний мембраны датчика;
- 4. оптическая плотность газа.
- 9. В каких единицах измеряется дымность:
 - 1. натуральный показатель ослабления;
 - 2. оптическая плотность;
 - 3. коэффициент пропускания;
 - 4. температура дыма;
- 10. Для каких целей применяется оптическая, электрическая и газовая компенсация показаний газоанализатора:
 - 1. для устранения влияния сопутствующих компонентов;
 - 2. для устранения влияния температуры;
 - 3. для устранения влияния расхода газа;
 - 4. для компенсации постоянной составляющей выходного сигнала.
- 11. Какое основное требование предъявляется к конструкции оптических элементов измерительных камер инфракрасных анализаторов:
 - 1. иметь максимальный коэффициент отражения света;
 - 2. иметь максимальный коэффициент поглощения;
 - 3. пропускать инфракрасное излучение без потерь в диапазоне требуемых длин волн;
 - 4. иметь минимальный коэффициент линейного расширения.
- 12. Чему равна длина кюветы инфракрасного анализатора при анализе газов:
 - 1. 3 5 mm;
 - 2. может быть любая длина;
 - 3. 300 500 mm:
 - 4. зависит от выбранной длины волны света..
- 13. Чему равна длина кюветы инфракрасного анализатора при анализе жидкостей:
 - 1. 300 500 MM
 - 2. может быть любая длина;
 - 3. 3-5 MM;
 - 4. зависит от температуры жидкости.
- 14. Какой из перечисленных факторов вносит определяющий вклад в величину погрешности оптического анализатора:
 - 1. длина волны источника света;
 - 2. постоянство окраски пробы в процессе анализа;
 - 3. стабильность источника света;
 - 4. температура пробы.
- 15. Какая из перечисленных величин определяет чувствительность фотометрического метода анализа:
 - 1. молярный коэффициент поглощения;
 - 2. водородный показатель пробы;
 - 3. оптическая плотность;
 - 4. длина волны.
- 16. В каком диапазоне возможно измерение оптической плотности при фотометрических методах анализа:
 - 1. от 0 до ∞;

- 2. от 0 до 6,0;
- 3. от 0,03 до 2,0;
- 4. от ∞ до 0.
- 17. Для каких целей применяют метод базовой линии:
 - 1. для калибровки газоанализатора;
 - 2. в ИК- спектроскопии для определения линии 100% пропускания;
 - 3. для получения нулевой линии хроматограммы;
 - 4. при построении градуировочного графика.

4. Хроматографические методы

- 1. Временем удерживания компонента называется интервал времени хроматограммы, отсчитываемый между:
 - 1. началом ввода пробы и пиком газа-носителя;
 - 2. началом ввода пробы и пиком последнего компонента;
 - 3. пиками первого и последнего компонентов;
 - 4. пиком газа-носителя и пиком соответствующего компонента.
- 2. Степенью разделения компонентов хроматограммы с пиками h_1 и h_2 ($h_1 > h_2$) и высотой минимума (h_{min}) называют величину, рассчитываемую по формуле:
 - 1. $S=(h_2-h_1)/h_2$;
 - 2. $S=(h_1-h_2)/h_1$;
 - 3. $S = (h_2 h_{min}) / h_2;$
 - 4. $S=(h_{min}-h_1)/h_2$.
- 3. Как известно полнота разделения двух компонентов в хроматографии выражается с помощью критерия разделения К. Утверждение: « Разделение является полным» означает следующее условие:
 - 1. K = 0;
 - 2. K = -1;
 - 3. среди ответов нет правильного;
 - 4. K = 1.
- 4. По какому из приведенных параметров хроматограммы можно определить концентрацию компонента:
 - 1. высота минимума;
 - 2. нулевая линия;
 - 3. высота или площадь максимума;
 - 4. время удерживания.
- 5. По какому из приведенных параметров хроматограммы можно определить природу компонента:
 - 1. высота минимума;
 - 2. нулевая линия;
 - 3. высота пика;
 - 4. время удерживания.

5. Электрохимические методы

- 1. К какой группе аналитических методов можно отнести полярографию:
 - 1. оптические;

2.	электрохимические;
3.	хроматографические;
4.	резонансные.

- 2. Каким преимуществом обладает разностный полярограф по сравнению с классическим:
 - обладает большей чувствительностью;
 - 2. позволяет устранять влияние сопутствующих компонентов и емкостного тока;
 - позволяет устранять влияние миграции ионов; 3.
 - обладает большей разрешающей способностью.
- 3. По какому из приведенных параметров полярограммы можно определить природу компонента:
 - остаточный ток: 1.
 - потенциал разложения;
 - потенциал полуволны;
 - предельный ток. 4.
- 4. По какому из приведенных параметров полярограммы можно определить концентрацию компонента:
 - диффузионный ток; 1.
 - 2. начальное напряжение;
 - потенциал полуволны;
 - потенциал разложения.
- 5. Для каких целей используется компенсатор полярографа? Для компенсации:
 - остаточного тока;
 - 2. тока емкости двойного слоя;
 - 3. предельного тока;
 - 4. тока утечки.
- В каком диапазоне потенциалов используют ртутные капающие электроды:
 - от 0.3 до -2.0 B;
 - 2. от $-\infty$ до $+\infty$ B;
 - 3. от 0 до -2.0 B;
 - 4. от 0,3 до 0 В.
- 7. В каком диапазоне потенциалов используют твердые микроэлектроды:
 - 1. от 0,3 до − 2,0 В;
 - 2. от 1,4 до -0,1 В;
 - 3. от $-\infty$ до $+\infty$ В;
 - 4. от 1,4 до -2,0 В.
- 8. Для каких целей используют электролитический ключ:
 - 1. для устранения миграции ионов;
 - 2. для устранения поляризации электрода;

3. для увеличения	чувствитель	ьности;	
4. для снижения а	ктивности ис	онов.	
Составил			
доцент кафедры			
<u> </u>			В. Зубков
1			,
Заведующий кафедрой	МНЭП		
д.фм.н., доцент	14111331	R	Г Литвинов
д.фм.н., доцент			- Оператор ЭДО ООО
			- Оператор ЭДО ООО
	1	ПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ	
	СОГЛАСОВАНО	ФГБОУ ВО "РГРТУ", РГРТУ, Литвинов Владимир Георгиевич, Заведующий кафедрой МНЭЛ	16.07.25 13:45 (
		. этринати у тападунации кафадран и нахи	