МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет имени В.Ф. Уткина»

КАФЕДРА «ЭЛЕКТРОННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

«ОБНАРУЖЕНИЕ, СОПРОВОЖДЕНИЕ И УКАЗАНИЕ ОБЪЕКТОВ»

Специальность

27.05.01 Специальные организационно-технические системы

Специализация

Информационные технологии и программное обеспечение в специальных организационно-технических системах

Квалификация (степень) выпускника — инженер-системотехник

Форма обучения — очная, очно-заочная

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы – это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель — оценить соответствие знаний, умений и владений, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Промежуточный контроль по дисциплине осуществляется путем проведения экзамена. Форма проведения экзамена — тестирование и выполнение практических заданий. При необходимости, проводится теоретическая беседа с обучаемым для уточнения оценки. Выполнение заданий на практических занятиях в течение семестра и заданий на самостоятельную работу является обязательным условием для допуска к экзамену.

2. ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Контролируемые разделы (темы)	Код контролируемой	Наименование
дисциплины (результаты по разделам)	компетенции (или её части)	оценочного средства
Тема 1. Системы автоматического	ОПК-7.1, ОПК-7.2	Экзамен
обнаружения и сопровождения объектов		
по видеоизображениям		
Тема 2. Математические основы и модели	ОПК-7.1, ОПК-7.2	Экзамен
представления последовательности		
изображений		
Тема 3. Корреляционные методы	ОПК-7.1, ОПК-7.2	Экзамен
Тема 4. Методы статистического анализа	ОПК-7.1, ОПК-7.2	Экзамен
и сегментации изображений		
Тема 5. Дифференциальные методы	ОПК-7.1, ОПК-7.2	Экзамен
обработки изображений		
Тема 6. Геометрические преобразования	ОПК-7.1, ОПК-7.2	Экзамен
изображений и методы оценки их		
параметров		
Тема 7. Пространственная реконструкция	ОПК-7.1, ОПК-7.2	Экзамен
3D-сцены по изображениям		
Тема 8. Нейросетевые технологии	ОПК-7.1, ОПК-7.2	Экзамен
обработки видеопоследовательности		

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Описание критериев и шкалы оценивания промежуточной аттестации

а) описание критериев и шкалы оценивания тестирования:

За каждый тестовый вопрос назначается максимально 1 балл в соответствии со следующим правилом:

- 1 балл ответ на тестовый вопрос полностью правильный;
- 0,5 балла отчет на тестовый вопрос частично правильный (выбраны не все правильные варианты, указаны частично верные варианты);

- 0 баллов – ответ на тестовый вопрос полностью не верный.

б) описание критериев и шкалы оценивания решения практического задания:

Шкала оценивания	Критерий	
5 баллов	Задание выполнено верно, полностью самостоятельно, без	
(эталонный уровень)	дополнительных наводящих вопросов преподавателя	
3 балла	Задание выполнено верно, но имеются технические неточности	
(продвинутый уровень)		
1 балл	Задание выполнено верно, с дополнительными наводящими	
(пороговый уровень)	вопросами преподавателя	
0 баллов	Задание не выполнено	

На промежуточную аттестацию (экзамен) выносится 20 тестовых вопросов, два практических задания. Максимально студент может набрать 30 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «отлично», «хорошо», «удовлетворительно» и «неудовлетворительно».

Оценка «отлично» выставляется студенту, который набрал в сумме 25 баллов и выше (выполнил все задания на эталонном уровне). Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «хорошо» выставляется студенту, который набрал в сумме от 18 до 24 баллов при условии выполнения всех заданий на уровне не ниже продвинутого. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «удовлетворительно» выставляется студенту, который набрал в сумме от 10 до 17 баллов при условии выполнения всех заданий на уровне не ниже порогового. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «неудовлетворительно» выставляется студенту, который набрал в сумме менее 10 баллов или не выполнил всех предусмотренных в течение семестра практических заданий.

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация

Коды	Результаты освоения ОПОП		
компетенций	Содержание компетенций		
ОПК-7	Способен аргументировано выбирать и обосновывать, а также разрабатывать		
	схемотехнические, системотехнические и аппаратно-программные решения		
	управления сложными техническими объектами и технологическими процессами		
	и реализовывать их на практике		
ОПК-7.1	Выбирает и обосновывает схемотехнические, системотехнические и аппаратно-		
	программные решения управления сложными техническими объектами и		
	технологическими процессами		
ОПК-7.2	Практически реализует схемотехнические, системотехнические и аппаратно-		
	программные решения управления сложными техническими объектами и		
	технологическими процессами		

а) типовые тестовые вопросы:

- 1. Что такое цифровое изображение?
 - а) непрерывная функция распределения яркости
 - b) +двумерная матрица целочисленных значений яркости (цвета)
 - с) гладкая функция распределения цвета
- 2. Что такое дискретизация и квантование изображения?
 - а) вычисление средней яркости
 - b) вычисление количества пикселей в изображении

- с) +представление в виде конечного множества отсчетов и значений
- d) определение пиксельного разрешения
- 3. Что такое гистограмма изображения?
 - а) количество пикселей в изображении
 - b) размах между максимальной и минимальной яркостью
 - с) фильтрация высоких частот изображения
 - d) +частота встречаемости пикселов одинаковой яркости
- 4. Для чего применяется гауссова фильтрация?
 - а) повышения контраста изображения
 - b) для вычисления БПФ
 - с) +сглаживания изображения
 - d) выделения контуров изображения
- 5. Для чего применяется медианный фильтр?
 - а) для вычисления производных
 - b) для вычисления градиента изображения
 - с) для выделения ключевых точек
 - d) +уменьшения шума
- 6. Что такое пирамида изображений?
 - а) трехмерное изображение
 - +представление изображения в различных пространственных масштабах
 - с) представление изображения в виде гистограммы
 - d) представление изображения в виде Фурье-образа
- 7. Что такое бинарное изображение?
 - а) цифровое изображение, яркость которого закодирована 8 битами
 - b) изображение, средняя яркость которого равна 0
 - с) изображение с низким глобальным контрастом
- d) + цифровое изображение, которое имеет только два возможных значения для каждого пикселя
- 8. Назовите основные морфологические операции.
 - а) +сжатие, расширение, открытие, закрытие
 - b) открытие, закрытие
 - с) выделение границ
- 9. Что такое особенности изображения?
 - а) "уголки" объектов на изображении
 - b) + любые яркостно-геометрические структуры фрагментов изображений
 - с) самая яркая точка фрагмента
 - d) контур объекта
- 10. На чем основывается традиционная техника сравнения текущего изображения с эталонным?
 - а) на гистограммной обработке
 - b) + на корреляционных функциях
 - с) на морфологическом анализе
 - d) на статистических показателях
- 11. Для чего используется БПФ в задаче сравнения изображений?
 - а) для получения градиента изображения
 - b) для построения гистограммы
 - с) + для перехода в частотную область и эффективной реализацию свертки
 - d) для удаления шумов
 - е) для масштабирования изображения

- 12.О чем можно судить по значению корреляционной метрики двух изображений? + о степени их сходства b) о общей средней яркости c) о равенстве разрешений изображений о равенстве глобального контраста d) 13. Назовите основные показатели информативности фрагмента изображения. Средняя яркость фрагмента b) +Дисперсия +СКО c) Количество пикселей фрагмента d) +Отношение сигнал/шум e) 14. Что такое дисперсия изображения? средняя яркость изображения a) b) максимальная яркость изображения c) + мера разброса яркости изображения от среднего значения d) минимальная яркость изображения 15. Что такое отношение сигнал-шум изображения? отношение максимальной яркости к минимальной a) b) отношение максимальной яркости к средней + отношение средней яркости к среднеквадратичному отклонению c) разность между максимальной и минимальной яркостью d) 16. Что такое оптический поток? мощность светового излучения, падающего на датчик a) b) +поле движения пикселей одного изображения относительно другого метод быстрого получения Фурье-образа изображения c) 17. Чем можно аппроксимировать дифференциальный оператор? a) медианным фильтром b) +конечно-разностной схемой. корреляционным сопоставлением c) d) с помощью БПФ 18. Что такое метод наименьших квадратов? a) + метод минимизации суммы квадратов отклонений некоторых функций от искомых переменных b) метод определения размера растра изображения c) метод поиска ключевой точки 19.Перечислите популярные детекторы ключевых точек **RANSAC** a) b) + SIFR +SURF c) d) +детектор углов Харриса
- 21. Что фундаментальная матрица?

b)

c)d)

20. Для чего используется метод триангуляция в стереозрении?

для вычисления матрицы проекции камеры +для определения глубины по изображениям

для определения внутренних параметров камеры

для определения геометрического преобразования

- а) матрица внутренних параметров камеры
- b) +матрица, связывающая проекции в эпиполярной геометрии
- с) матрица внешних параметров камеры

22. Что такое внутренние параметры камеры (основные)?

- а) матрица поворота мировой системы координат в координаты камеры
- b) размеры сенсора камеры
- с) + фокусное расстояние и координаты принципиальной точки

23. Что такое внешние параметры камеры?

- а) методы обработки информации
- b) +параметры переводящее координаты точек сцены из мировой системы координат в систему координат, связанную с камерой
 - с) компьютерная сеть для передачи данных
 - d) вычислительная мощь компьютера

24. Что такое классификация?

- а) выделение объекта на изображении
- b) определение параметров сегмента
- с) +определение класса объекта по его характеристикам

25. Что такое кластеризация?

- а) +разбиение множества объектов на группы, определяемых в процессе работы алгоритма
- b) разбиение множества объектов на заранее известные группы
- с) выделение сегмента на изображении

26. Какую задачу решает линейна регрессия?

- а) разбивает некоторое множество объектов на классы
- b) сопоставляет некоторый объект определенному классу
- с) + по известным характеристикам объекта определяет значение некоторого его параметра

27. Что такое обратное распространение ошибки?

- d) метод минимизации в регрессионном анализе
- e) +способ обучения сети на основе вычисления градиента для обновления весов и минимизации ошибки
- f) метод минимизации функционалов оптического потока

28. Назовите основные уровни обработки информации в системах обнаружения и слежения.

- а) слежение и распознавание
- b) + восстановление изображения, выделение сегментов, оценка параметров сегментов, слежение, оценка параметров объектов, обнаружение объектов, сопровождение и распознавание
- с) восстановление изображения, выделение контуров объектов, слежение и распознавание
- d) выделение сегментов, оценка параметров сегментов, слежение

29. В чем состоит задача восстановления изображения?

- а) + в реконструкции изображения, которое было до этого искажено в следствии дефектов и шумов датчика изображения, неравномерности частотных характеристик канала передачи и т.д.
- b) в преобразовании из аналоговой формы в дискретную
- с) в преобразовании из временной области в частотную

30. В чем состоит задача выделения сегментов на изображении?

- а) в определении размера и координат сегмента
- b) + в принятии решения о наличии объекта для каждой точки изображения
- с) в определении яркостных характеристик сегмента
- d) в подавлении шумов сегмента изображения

- 31. В чем заключается задача оценки параметров сегментов?
 - а) в соотнесении его к определенному классу
 - b) + в определении таких характеристик сегментов, как координаты центра, размеры, средняя яркость и т.д.
 - с) в определении по известным характеристикам сегмента значения некоторого его параметра
- 32. В чем состоит задача слежения за объектами?
 - а) в определении координат и размеров объектов
 - b) в определении скорости движения объекта
 - с) + в оценке траекторий движения объектов во времени, основываясь на анализе поведения сегментов во времени
 - d) в определении формы объекта
- 33. В чем заключается задача оценки параметров объектов?
 - а) текстовых процессоров
 - b) табличных редакторов
 - с) специализированных программных приложений
 - d) + в определении таких характеристик объектов, как координаты центра, размеры, яркость, форма, скорость, ускорение
- 34. В чем заключается задача обнаружения объекта?
 - а) обнаружение подвижного объекта
 - b) обнаружение самого яркого объекта на изображении
 - с) в определении всех характеристик объекта
 - d) + в принятие решения об обнаружении объекта заданного типа на основе оценки его характеристик
- 35. Что такое сегмент?
 - а) выделенный контур объекта
 - b) + связная совокупность точек бинарного изображения. Являются исходными данными для дальнейшего обнаружения объектов.
 - с) самый яркий объект на изображении
 - d) самый крупный объект на изображении
- 36. Что такое объект?
 - а) любой подвижный сегмент на изображении
 - b) + изображение реальных наблюдаемых объектов
 - с) самый крупный сегмент на изображении
 - d) самый яркий сегмент на изображении
- 37. Какому основному условию должна удовлетворять дискретизации аналогового сигнала в дискретную форму?
 - а) сигнал не должен быть сильно зашумлен
 - b) +условию теоремы Котельникова
 - с) среднее значение сигнала должно равняться нулю
- 38. Что позволяет получить спектр изображения
 - а) преобразование из аналоговой формы в дискретную
 - b) гистограмма изображения
 - с) + преобразование Фурье
 - d) градиент изображения
- 39. Что такое гистограмма изображения?
 - а) + является оценкой распределения вероятностей значений яркостей
 - b) является детектором ключевых точек
 - с) фильтр шумов

- d) метод выделения границ
- 40. Назовите основные разновидности фильтрации:
 - а) +линейная, нелинейная
 - b) + пространственная, пространственно-временная
 - с) геометрическая
- 41. Что такое градиент изображения?
 - а) значение частной производной в горизонтальном направлении
 - b) + вектор частных производных по двум взаимно перпендикулярным направлениям
 - с) значение частной производной в вертикальном направлении
- 42. Назовите основные геометрические преобразования.
 - а) изменение яркости
 - b) искажение
 - с) растяжение
 - d) + смещение, изменение масштаба, поворот
- 43. На чем основываются классические корреляционные алгоритмы?
 - а) на гистограммной обработке
 - b) + на взаимной корреляционной функции
 - с) + на разностных корреляционных функциях
 - d) на поиске ключевых точек
- 44. За счет чего можно ускорить вычисление дискретной свертки?
 - а) за счет гистограммной обработки
 - b) + за счет использования БПФ
 - с) за счет сглаживания изображения
 - d) устранения шумов на изображении
- 45. На каком математическом методе основывается вычисление оптического потока
 - а) метоле главных компонент
 - b) + минимизации функционала
 - с) определение дисперсии и СКО
 - d) на построении и анализе гистограммы изображений
- 46. На каком методе основывается сопоставление ключевых точек
 - а) методе главных компонент (РСА)
 - b) методе наименьших квадратов (МНК)
 - с) +методе случайных выборок (RANSAC)
 - d) вычислении градиента изображений
- 47. Что такое карта глубины
 - а) изображение, на котором выделены контуры объектов
 - b) +изображение, на котором для каждого пикселя, вместо цвета, храниться его расстояние до камеры
 - с) изображение, представленное в градации серого
 - d) RGB-изображение
- 48. Что осуществляет матрица проекции камеры
 - а) связывает две проекции одного изображения
 - b) переводит цветное изображение в полутоновое
 - с) + проецирует точку пространства на точку изображения
- 49. Чем определяется эпиполярная геометрия стереопары
 - d) координатами камеры
 - е) +фундаментальной матрицей

- f) мировыми координатами
- g) матрицей проекции камеры

50. Задача регрессии сводится к

- а) нахождения частых зависимостей между объектами или событиями
- b) определения класса объекта по его характеристикам
- с) + определение по известным характеристикам объекта, значение некоторого его параметра
- d) поиска независимых групп и их характеристик в всем множестве анализируемых данных

51. Задача классификации сводится к

- а) нахождения частых зависимостей между объектами или событиями
- b) + определения класса объекта по его характеристикам
- с) определение по известным характеристикам объекта, значение некоторого его параметра
- d) поиска независимых групп и их характеристик в всем множестве анализируемых данных

52. Задача кластеризации заключается в

- а) нахождения частых зависимостей между объектами или событиями;
- b) определения класса объекта по его характеристикам;
- с) определение по известным характеристикам объекта, значение некоторого его параметра;
- d) + поиска независимых групп и их характеристик во всем множестве анализируемых данных.

б) типовые практические задания:

Задание 1

К зашумленному изображению примените ряд сглаживающих фильтров (Гаусса, медианный) с различными масками. Примените операторы вычисления производных к восстановленным изображения. Опишите результат.

Критерии выполнения задания 1

Задание считается выполненным, если обучающемуся удалось сгладилось изображение, убрать шумы, а затем выделились контуры.

Задание 2

Примените основные морфологические фильтры к бинарному изображению для его сегментации. Опишите изменения, происходящие с изображением на каждом этапе его обработки фильтрами.

Критерии выполнения задания 2

Задание считается выполненным, если обучающийся контролировал каждый этап применения морфологических фильтров выделил отдельные сегменты.

Задание 3

Реализуйте простую разностную корреляционную функцию для поиска эталонного фрагмента на изображении.

Критерии выполнения задания 3

Задание считается выполненным, если обучающийся верно нашел указанный как эталон фрагмент на изображении.

Задание 4

Примените ряд детекторов (SIFT, SURF, Харриса) для отыскания ключевых точек на изображении. Опишите основные этапы построения дескриптора ключевой точки каждым из детекторов

Критерии выполнения задания 4

Задание считается выполненным, если обучающийся выделил особенности на изображении и дал объяснения за счет чего выбрались те или иные особенности на изображении

Задание 5

По найденным из предыдущего задания ключевым точкам оценить фундаментальную матрицу.

Критерии выполнения задания 5

Задание считается выполненным, если обучающийся вычислил фундаментальную матрицу.

По результатам предыдущего задания построить 3D-образ сцены по заданным изображениям.

Критерии выполнения задания 6

Задание считается выполненным, если обучающийся построил разреженное облако точек 3D-образ сцены.

Задание 7

Классификация с помощью линейной регрессии. Обучить простую нейронную сеть.

Критерии выполнения заданий 7

Задание считается выполненным, если обучающийся верно классифицировал объекты на заданных изображения.