ПРИЛОЖЕНИЕ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра радиотехнических устройств

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

По дисциплине

Б1.О.22 «Микросхемотехника» Направление подготовки 11.03.01 Радиотехника

Направленность (профиль) подготовки
Беспроводные технологии в информационных системах
Радиофотоника
Беспроводные технологии в радиотехнических системах и устройствах
Радиотехнические системы локации, навигации и телевидения
Аппаратно-программная инженерия радиолокационных и навигационных систем

Уровень подготовки **Бакалавриат**

Квалификация выпускника – бакалавр

Формы обучения – очная

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общепрофессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено».

Промежуточная аттестация по дисциплине осуществляется проведением зачета. Форма проведения зачета (с оценкой) — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый может составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки и т.п.

Профессиональные компетенции выпускников и индикаторы их достижения

Код	Формулировка компетенции	Индикаторы достижения	
ОПК-1	Способен	ОПК-1.1. Использует фундаментальные законы	
	использовать	природы и основные физические и математические	
	положения, законы и	законы в процессе исследования физических	
	методы естественных	объектов и процессов	
	наук и математики	ОПК-1.2. Применяет математический аппарат для	
	для решения задач	анализа свойств и поведения физических объектов	
	инженерной	ОПК-1.3. Составляет математические модели	
	деятельности	физических объектов и процессов для решения	
		задач инженерной деятельности	

Паспорт фонда оценочных средств по дисциплине (модулю)

Nº π/π	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируе мой компетенции (или её части)	Наименова ние оценочного средства
1	2	3	4
	Модуль 1 Введение. Основные схемотехнические на- правления построения аналоговых интегральных схем		

1.1	Основные понятия и определения	ОПК-1	Зачет с оценкой
1.2	Основные свойства компонентов интегральных микросхем. Основные принципы архитектурного построения современных линейных интегральных микросхем	ОПК-1	Зачет с оценкой
	Модуль 2 Дифференциальный каскад (ДК) как основная схема каскада для интегральной схемы		
2.1	Основная (классическая) схема дифференциального каскада	ОПК-1	Зачет с оценкой
2.2	Дифференциальный каскад с активной (динамической) нагрузкой	ОПК-1	Зачет с оценкой
2.3	Шумовые свойства и параметры дифференциаль- ного каскада	ОПК-1	Зачет с оценкой
2.4	Методы подачи сигнала на дифференциальный каскад	ОПК-1	Зачет с оценкой
	Модуль 3 Основные схемы базовых и вспомогательных каскадов аналоговых интегральных схем		
3.1	Входные каскады интегральных схем	ОПК-1	Зачет с оценкой
3.2	Выходные каскады интегральных схем	ОПК-1	Зачет с оценкой
3.3	Источники тока (генераторы стабильного тока (ГСТ))	ОПК-1	Зачет с оценкой
3.4	Источники напряжения	ОПК-1	Зачет с оценкой
3.5	Схемы сдвига уровня постоянного напряжения	ОПК-1	Зачет с оценкой
	Модуль 4 Схемотехника операционных усилителей		
4.1	Общие характеристики операционных усилителей	ОПК-1	Зачет с оценкой
4.2	Основные свойства операционных усилителей	ОПК-1	Зачет с оценкой
4.3	Основные параметры операционных усилителей	ОПК-1	Зачет с оценкой
4.4	Работа операционного усилителя с обратной свя- зью	ОПК-1	Зачет с оценкой
	Модуль 5 . Аналоговые устройства на основе операционных усилителей		
5.1	Линейные и нелинейные схемы на базе операционных усилителей и методы их расчета	ОПК-1	Зачет с оценкой
5.2	Активные фильтры на базе операционных усилителей	ОПК-1	Зачет с оценкой
	Модуль 6 Микросхемы СВЧ диапазона		
6.1	Общие положения	ОПК-1	Зачет с оценкой
			1

			оценкой
6.3	Интегральные СВЧ транзисторы	ОПК-1	Зачет с
			оценкой
6.4	Монолитные интегральные микросхемы	ОПК-1	Зачет с
			оценкой
	Модуль 7		
	Проблемы повышения степени интеграции.		
	Основы функциональной электроники. Микросис-		
	темная техника и наноэлектроника.		
7.1	Проблемы повышения степени интеграции	ОПК-1	Зачет с
			оценкой
7.2	Основы функциональной электроники	ОПК-1	Зачет с
			оценкой
7.3	Микросистемная техника и наноэлектроника	ОПК-1	Зачет с
			оценкой

Критерии оценивания компетенций (результатов)

- 1). Уровень усвоения материала, предусмотренного программой.
- 2). Умение анализировать материал, устанавливать причинно-следственные связи.
- 3). Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4). Качество ответа (его структура, логичность, убежденность, общая эрудиция)
- 5). Использование дополнительной литературы при подготовке ответов.

Уровень освоения знаний, умений и навыков по дисциплине оценивается с использованием следующей шкалы:

«Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на зачете и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

Оценка «не зачтено» выставляется студенту, который не справился более чем с 50% вопросов и заданий билета, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Как правило, оценка «не зачтено» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Типовые контрольные задания или иные материалы

Типовые задания для самостоятельной работы

Чтение, анализ и конспектирование научной литературы по темам и проблемам курса.

Ответы на контрольные вопросы и решение задач из учебника. Конспектирование, аннотирование научных публикаций.

Перечень лабораторных работ и вопросов для контроля

	Перечень лабораторных работ и вопросов для контроля
№ работ ы	Название лабораторной работы и вопросы для контроля
1	Исследование неинвертирующих усилителей на операционном
_	усилителе
	1. Операционный усилитель (ОУ): определение, условные
	обозначения, общие характеристики, схема включения, условие баланса.
	2. Операционный усилитель (ОУ): понятие идеального ОУ и его
	основные свойства. Два правила анализа ОУ. Отличие реального ОУ от
	идеального.
	3. Структурные схемы стандартных операционных усилителей (ОУ).
	Назначение входящих в них каскадов. Отличие двухкаскадной от
	трехкаскадной модели.
	4. Основные параметры операционного усилителя (ОУ):
	а) коэффициент усиления, входное и выходное сопротивления;
	б) напряжение смещения нуля и коэффициент влияния источника
	питания;
	в) температурный дрейф напряжения смещения нуля, входной ток и
	разность входных токов и их температурный дрейф;
	г) частота единичного усиления, скорость нарастания выходного
	напряжения, время восстановления.
	5. Работа операционного усилителя (ОУ) с обратной связью.
	Коэффициент передачи обратной связи, коэффициент усиления ОУ с учетом
	обратной связи, их связь в идеальном ОУ.
	6. Амплитудно-частотная характеристика операционного усилителя
	(ОУ). Связь коэффициента усиления и полосы пропускания ОУ.
	7. Вопросы устойчивости операционных усилителей. Условие
	устойчивости и внутренняя коррекция.
	8. Неинвертирующий усилитель на операционном усилителе.
	Коэффициент усиления, входное и выходное сопротивления. Влияние
	параметров реального ОУ на динамический диапазон усилителя. Достоинства
	и недостатки.
	9. Неинвертирующий усилитель-повторитель на операционном
	усилителе. Коэффициент усиления, входное и выходное сопротивления.
	Влияние параметров реального ОУ на динамический диапазон усилителя.
	Достоинства и недостатки.
2	Исследование инвертирующих усилителей на операционном
	усилителе 1. Инвертирующий усилитель на операционном усилителе. Коэффициент
	усиления, входное и выходное сопротивления. Влияние параметров реального
1	yemenin, produce a privation composition. Distribute hapawerpos pearismoro

ОУ на динамический диапазон усилителя. Достоинства и недостатки.

- 2. Преобразователь ток-напряжение на операционном усилителе: принципиальная схема, вывод математической зависимости $U_{BMX} = f\left(I_{BX}\right)$ и анализ схемы.
- 3. Преобразователь напряжение-ток на операционном усилителе: принципиальная схема, вывод математической зависимости $I_H = f\left(U_{BX}\right)$ и анализ схемы. Вольтметр постоянного тока.
- 4. Сумматоры (суммирующие усилители) на операционных усилителях: принципиальные схемы и принципы работы.
- 5. Аналоговый вычитатель (усилитель разностного сигнала) на операционном усилителе. Схема и принцип работы.
- 6. Аналоговый интегратор на операционном усилителе: принципиальная схема и вывод математической зависимости $u_{BbIX} = f(u_{BX})$.
- 7. Аналоговый дифференциатор на операционном усилителе: принципиальная схема и вывод математической зависимости $u_{BMX} = f(u_{BX})$.
- 8. Усилитель с регулируемым сдвигом фазы на операционном усилителе: принципиальная схема и вывод математической зависимости $\tilde{\mathbf{K}}_{\mathbf{k}} = \mathbf{f}(\mathbf{R})$, анализ полученного выражения при f > 0.
- 9. Усилитель с регулируемым коэффициентом усиления на операционном усилителе: принципиальная схема, вывод математической зависимости $K_u = f(R)$, анализ полученного выражения.
- 10. Компараторы на операционном усилителе (алгоритм работы, принципиальные схемы).
- 11. Логарифмирующий усилитель на операционном усилителе: принципиальная схема и вывод математической зависимости $u_{BLX} = f(u_{BX})$.

3 Исследование активных фильтров нижних и верхних частот на операционном усилителе

- 1. Виды фильтров и их основные характеристики. Активные фильтры, их преимущества и недостатки.
- 2. Порядок активного фильтра и его влияние на АЧХ и ФЧХ (показать на примере какого-либо фильтра).
- 3. Добротность активного фильтра и ее влияние на АЧХ и ФЧХ (показать на примере какого-либо фильтра).
- 4. Принципы проектирования активных фильтров на операционных усилителях. Передаточная характеристика, определение АЧХ и ФЧХ из передаточной характеристики. Принципы выбора элементов активных фильтров на операционных усилителях.
- 5. Основные требования, на основе которых разрабатывается методика расчета активных фильтров. Критерии проектирования для низкодобротных, среднедобротных и высокодобротных активных фильтров.
- 6. Низкодобротные фильтры нижних частот 1-го, 2-го и 3-го порядка на операционных усилителях. Схемотехника, АЧХ и ФЧХ.
- 7. Схемотехника среднедобротных фильтров нижних частот 2-го порядка на операционных усилителях. АЧХ и ФЧХ.
 - 8. Высокодобротные фильтры нижних частот на операционных

усилителях. Схемотехника, АЧХ и ФЧХ.

- 9. Низкодобротные фильтры верхних частот 1-го, 2-го и 3-го порядка на операционных усилителях. Схемотехника, АЧХ и ФЧХ.
- 10. Схемотехника среднедобротных фильтров верхних частот 2-го порядка на операционных усилителях. АЧХ и ФЧХ.

4 Исследование полосового и режекторного активных фильтров на операционном усилителе

- 1. Принципы выбора элементов и расчета активных фильтров на операционных усилителях.
- 2. Низкодобротные полосовые активные фильтры на операционных усилителях, их схемотехника, AЧХ и ФЧХ.
- 3. Среднедобротные полосовые активные фильтры на операционных усилителях, их схемотехника, АЧХ и ФЧХ.
- 4. Высокодобротные полосовые активные фильтры на операционных усилителях, их схемотехника, АЧХ и ФЧХ.
- 5. Низкодобротные режекторные активные фильтры на операционных усилителях, их схемотехника, АЧХ и ФЧХ.
- 6. Среднедобротные режекторные активные фильтры на операционных усилителях, их схемотехника, АЧХ и ФЧХ.
- 7. Высокодобротные режекторные активные фильтры на операционных усилителях, их схемотехника, АЧХ и ФЧХ.

Вопросы к зачету

- 1. Что такое интегральная микросхема (ИС)? Какие бывают ИС? Функции ИС? Что входит в их состав? Классификация по уровню сложности. Уровни схемотехнического представления ИС.
- 2. Основные свойства компонентов интегральных микросхем (по сравнению с дискретными). Основные принципы архитектурного построения современных линейных интегральных микросхем (раскрыть суть каждого принципа).
- 3. Принципиальная схема дифференциального каскада (ДК). Дифференциальный и синфазный сигналы, коэффициенты усиления, относительное ослабление синфазного сигнала. Почему ДК является основной схемой каскада для интегральной схемы?
- 4. Проходная характеристика дифференциального каскада: вывод математической зависимости $I_K = f\left(U_{BX}\right)$ и графики проходных характеристик, анализ трех областей графиков.
- 5. Свойства дифференциального каскада (ДК): динамический диапазон, двухстороннее ограничение, крутизна проходной характеристики. Влияние величины и стабильности ГСТ на усилительные свойства ДК.
- 6. Входное сопротивление и коэффициент передачи дифференциального каскада (ДК). Особенности работы в микрорежиме. Динамическая нагрузка. Коэффициент передачи ДК с динамической нагрузкой.
- 7. Методы подачи сигнала на дифференциальный каскад. Достоинства и недостатки. Требования к источнику тока (ГСТ).

- 8. Шумы в дифференциальном каскаде (ДК): источники шумов, эквивалентная шумовая схема. Коэффициент шума. Шумовые параметры ДК.
- 9. Источники тока (ГСТ): определение, назначение, две основные схемы. Способы получения аппроксимации источника тока, близкого к идеальному.
- 10. Основная схема ГСТ на биполярных транзисторах. Принцип работы «токового зеркала».
- 11. Источник тока с диодным смещением: принципиальная схема, принцип работы, достоинства и недостатки.
- 12. Источники тока с диодным смещением с масштабированием и для схем с малыми токами: принципиальные схемы, принцип работы, достоинства и недостатки.
- 13. Схема токового зеркала Уилсона. Принцип работы, достоинства.
- 14. Схема ГСТ с перевернутой нагрузкой. Принцип работы. Применение ГСТ в качестве динамической нагрузки. ГСТ на двухколлекторном транзисторе.
- 15. Источники тока на полевых транзисторах. Принципиальные схемы, принцип работы, достоинства и недостатки.
- 16. Источники напряжения. Требования к источникам напряжения. Источник напряжения на эмиттерном повторителе: принципиальная схема, принцип работы, достоинства и недостатки.
- 17. Источники напряжения. Требования к источникам напряжения. Источник напряжения на стабилитроне. Принципиальная схема, принцип работы, достоинства и недостатки.
- 18. Источники напряжения. Требования к источникам напряжения. Источник напряжения на диодной цепочке. Принципиальная схема, принцип работы, достоинства и недостатки.
- 19. Источники напряжения. Требования к источникам напряжения. Каскады с несколькими источниками напряжения от одного опорного напряжения.
- 20. Источники опорного напряжения: основное требование и способы его достижения. Области применения источников опорного напряжения. Источник опорного напряжения на стабилитроне, принцип работы, достоинства и недостатки.
- 21. Схемы сдвига уровня постоянного напряжения: определение, необходимость, основные задачи. Схема транслятора уровня на резистивном делителе: принципиальная схема, принцип работы, достоинства и недостатки.
- 22. Схемы сдвига уровня постоянного напряжения: определение, необходимость, основные задачи. Схема транслятора уровня на стабилитроне: принципиальная схема, принцип работы, достоинства и недостатки.
- 23. Схемы сдвига уровня постоянного напряжения: определение, необходимость, основные задачи. Схема транслятора уровня с использованием диодной цепочки: принципиальная схема, принцип работы, достоинства и недостатки.
- 24. Схемы сдвига уровня постоянного напряжения: определение, необходимость, основные задачи. Схема транслятора уровня с использованием комбинации резистивного каскада и ГСТ: принципиальная схема, принцип работы, достоинства и недостатки.
- 25. Операционный усилитель (ОУ): определение, условные обозначения, общие характеристики, схема включения, условие баланса.
- 26. Операционный усилитель (ОУ): понятие идеального ОУ и его основные свойства. Два правила анализа ОУ. Отличие реального ОУ от идеального.
- 27. Структурные схемы стандартных операционных усилителей (ОУ). Назначение входящих в них каскадов. Отличие двухкаскадной и трехкаскадной модели.

- 28. Основные параметры операционного усилителя (ОУ).
- 29. Работа операционного усилителя (ОУ) с обратной связью. Коэффициент передачи обратной связи, коэффициент усиления ОУ с учетом обратной связи, их связь в идеальном ОУ.
- 30. Амплитудно-частотная характеристика операционного усилителя (ОУ). Связь коэффициента усиления и полосы пропускания ОУ.
- 31. Вопросы устойчивости операционных усилителей. Условие устойчивости и внутренняя коррекция.
- 32. Неинвертирующие усилитель и повторитель на операционном усилителе. Коэффициент усиления, входное и выходное сопротивления. Влияние параметров реального ОУ на динамический диапазон усилителя. Достоинства и недостатки.
- 33. Инвертирующий усилитель на операционном усилителе. Коэффициент усиления, входное и выходное сопротивления. Влияние параметров реального ОУ на динамический диапазон усилителя. Достоинства и недостатки.
- 34. Преобразователь ток-напряжение на операционном усилителе (принципиальная схема и вывод математической зависимости $U_{BMX} = f(I_{BX})$, анализ схемы).
- 35. Преобразователь напряжение-ток на операционном усилителе (принципиальная схема и вывод математической зависимости $I_H = f(U_{BX})$). Вольтметр постоянного тока.
- 36. Сумматоры (суммирующие усилители) на операционном усилителе.
- 37. Аналоговый вычитатель (усилитель разностного сигнала) на операционном усилителе.
- 38. Аналоговый интегратор на операционном усилителе (принципиальная схема и вывод математической зависимости $u_{BbIX} = f(u_{BX})$).
- 39. Аналоговый дифференциатор на операционном усилителе (принципиальная схема и вывод математической зависимости $u_{BMX} = f(u_{BX})$).
- 40. Усилитель с регулируемым сдвигом фазы на операционном усилителе

(принципиальная схема и вывод математической зависимости $\mathbf{K}_{\bullet} = \mathbf{f}(\mathbf{R})_{,}$ анализ полученного выражения при f > 0).

- 41. Усилитель с регулируемым коэффициентом усиления на операционном усилителе (принципиальная схема, вывод математической зависимости $K_u = f(R)$, анализ полученного выражения).
- 42. Компараторы на операционном усилителе (алгоритм работы, принципиальные схемы).
- 43. Логарифмирующий усилитель на операционном усилителе (принципиальная схема и вывод математической зависимости $u_{BbX} = f(u_{BX})$).
- 44. Основные виды фильтров и их основные характеристики. Активные фильтры: преимущества и недостатки.
- 45. Порядок активного фильтра на операционном усилителе и его влияние на АЧХ и ФЧХ (показать на примере какого-либо фильтра).
- 46. Добротность фильтра на операционном усилителе и ее влияние на АЧХ и ФЧХ (показать на примере какого-либо фильтра).
- 47. Принципы проектирования активных фильтров на операционных усилителях. Передаточная характеристика, определение АЧХ и ФЧХ из передаточной характеристики. Принципы выбора элементов активных фильтров на операционных усилителях.
- 48. Основные требования, на основе которых разрабатывается методика расчета активных

- фильтров. Критерии проектирования для низкодобротных, среднедобротных и высокодобротных активных фильтров.
- 49. Активные низкодобротные фильтры нижних частот 1-ого, 2-ого и 3-ого порядка на операционных усилителях. Схемотехника, АЧХ и ФЧХ.
- 50. Высокодобротный фильтр нижних частот на операционных усилителях. Схемотехника, AЧX и ФЧX.
- 51. Схемотехника среднедобротных фильтров нижних частот 2-ого порядка на операционных усилителях. АЧХ и ФЧХ.
- 52. Активные низкодобротные фильтры верхних частот 1-ого, 2-ого и 3-ого порядка на операционных усилителях. Схемотехника, АЧХ и ФЧХ.
- 53. Схемотехника среднедобротных фильтров верхних частот 2-ого порядка на операционных усилителях. АЧХ и ФЧХ.
- 54. Низкодобротные и среднедобротные полосовые активные фильтры на операционных усилителях. Схемотехника, АЧХ и ФЧХ.
- 55. Высокодобротный полосовой активный фильтр на операционных усилителях. Схемотехника, AЧX и Φ ЧX.
- 56. Низкодобротный и среднедобротный режекторные активные фильтры на операционных усилителях. Схемотехника и АЧХ.
- 57. Высокодобротный режекторный активный фильтр на операционных усилителях. Схемотехника, AЧX и ФЧX.
- 58. Входные каскады операционных усилителей: основные требования, типовые схемы.
- 59. Способы повышения входного сопротивления входных каскадов операционных усилителей. Использование схемы Дарлингтона (принцип получения высокого входного сопротивления, принципиальная схема).
- 60. Способы повышения входного сопротивления входных каскадов операционных усилителей. Использование транзисторов со сверхтонкой базой (принцип получения высокого входного сопротивления, принципиальная схема).
- 61. Способы повышения входного сопротивления входных каскадов операционных усилителей. Использование полевых транзисторов (принцип получения высокого входного сопротивления, принципиальные схемы).
- 62. Выходные каскады операционных усилителей: основные требования, практические схемы.
- 63. Микросхемы СВЧ диапазона: гибридная и монолитная технологии, основные материалы.
- 64. Микросхемы СВЧ диапазона: линии межсоединений и пассивные элементы.
- 65. Микросхемы СВЧ диапазона: активные элементы. Полевые транзисторы с барьером Шоттки, транзисторы на горячих электронах, биполярные гетеротранзисторы: основные свойства и области применения.
- 66. Проблемы повышения степени интеграции. От микро- к наноэлектронике (барьеры на пути перехода, начала наноэлектроники, новые транзисторные структуры и материалы).

Контрольные вопросы для оценки сформированности компетенций

(при ответе на вопрос необходимо из приведенных вариантов выбрать правильные ответы)

- 1. Основные свойства компонентов интегральных схем (ИС) по сравнению с дискретными:
- + параметры интегральных элементов значительно хуже (по номиналу, мощности, точности) дискретных
- параметры интегральных элементов значительно лучше (по номиналу, мощности, точности) дискретных
- интегральные компоненты имеют малый разброс параметров в разных экземплярах одноименных ИС
- + внутри ИС за счет близкого расположения на подложке одного кристалла в полном интервале эксплуатационных воздействий параметры элементов практически идентичны или достаточно строго пропорциональны
- 2. Основная схема каскада для интегральной схемы:
- + дифференциальный каскад
- схема с ОЭ
- схема с ОБ
- схема с ОК
- 3. Для обеспечения режима усиления в дифференциальном усилительном каскаде необходимо:
- подать на входы одинаковые сигналы
- + подать на входы одинаковые по амплитуде, но противофазные сигналы
- + подать сигнал на один из его входов, заземлив второй
- 4. Динамический диапазон дифференциального каскада:
- + в 2 раза выше, чем у одиночного транзистора в схеме с ОЭ
- в 2 раза ниже, чем у одиночного транзистора в схеме с ОЭ
- такой же как у одиночного транзистора в схеме с ОЭ
- 5. Динамическая нагрузка, используемая в дифференциальном каскаде, позволяет:
- + одновременно получить большие входное сопротивление и коэффициент передачи
- получить большее входное сопротивление при таком же коэффициенте передачи как в дифференциальном каскаде с резистивной нагрузкой
- + получить большой коэффициент передачи, практически не зависящий от параметров транзистора
- 6. Для питания операционного усилителя чаще всего используется двухполярный источник питания. Это позволяет
- использовать в его составе биполярные транзисторы разного типа проводимости
- использовать в его составе одновременно биполярные и полевые транзисторы
- + формировать на его выходе двухполярный выходной сигнал
- использовать низковольтные источники питания
- 7. Выходное напряжение операционного усилителя
- может быть больше напряжения питания, если его собственный коэффициент усиления очень большой (составляет сотни тысяч)
- + не может превышать величину напряжения питания при любых его параметрах
- может быть больше напряжения питания, если источник питания двухполярный
- 8. Условие баланса операционного усилителя:
- + если входное напряжение равно нулю, то и выходное напряжение равно нулю
- если входное напряжение больше нуля, то выходное напряжение тоже больше нуля
- если входное напряжение меньше нуля, то выходное напряжение больше нуля
- если входное напряжение больше нуля, то выходное напряжение меньше нуля
- 9. Идеальный операционный усилитель имеет (выберите наиболее полный ответ)
- собственный коэффициент усиления по напряжению равный бесконечности

- бесконечно большое входное сопротивление
- нулевое выходное сопротивление
- + собственный коэффициент усиления по напряжению равный бесконечности, бесконечно большое входное сопротивление и нулевое выходное сопротивление в бесконечно широкой полосе частот
- 10. Реальный операционный усилитель в отличии от идеального имеет (выбрать все правильные ответы)
- + большой собственный коэффициент усиления по напряжению, но не равный бесконечности
- + достаточно большое входное сопротивление (сотни кОм МОм)
- + достаточно низкое выходное сопротивление (обычно не превышает сотен Ом)
- собственный коэффициент усиления равный бесконечности, бесконечно большое входное сопротивление и нулевое выходное сопротивление в бесконечно широкой полосе частот
- большой собственный коэффициент усиления по мощности
- большой собственный коэффициент усиления по току
- 11. Правило анализа схем включения операционного усилителя
- выходное напряжение не может превышать величину напряжения питания
- выходное напряжение может быть больше напряжения питания, если источник питания двухполярный
- если входное напряжение равно нулю, то и выходное напряжение равно нулю
- если входное напряжение больше нуля, то выходное напряжение тоже больше нуля
- если входное напряжение меньше нуля, то выходное напряжение больше нуля
- если входное напряжение больше нуля, то выходное напряжение меньше нуля
- + входы идеального операционного усилителя не потребляют ток от цепи источника сигнала, т.е. Iвх=0
- 12. Правило анализа схем включения операционного усилителя
- выходное напряжение не может превышать величину напряжения питания
- выходное напряжение может быть больше напряжения питания, если источник питания двухполярный
- если входное напряжение равно нулю, то и выходное напряжение равно нулю
- если входное напряжение больше нуля, то выходное напряжение тоже больше нуля
- если входное напряжение меньше нуля, то выходное напряжение больше нуля
- если входное напряжение больше нуля, то выходное напряжение меньше нуля
- + между входами идеального операционного усилителя управляющее напряжение равно нулю в любой схеме включения
- 13. Коэффициент усиления операционного усилителя это
- + отношение приращения значения выходного напряжения к вызвавшему это приращение значению входного напряжения
- отношение максимального значения выходного напряжения к значению входного напряжения
- отношение максимального значения входного напряжения к минимальному значению входного напряжения
- отношение приращения значения выходного тока к вызвавшему это приращение значению входного напряжения
- 14. Входное сопротивление операционного усилителя это
- + величина, равная отношению приращения входного напряжения к приращению активной составляющей входного тока
- величина, равная отношению приращения выходного напряжения к приращению

активной составляющей выходного тока

- величина, равная отношению приращения выходного тока к приращению входного напряжения
- 15. Выходное сопротивление операционного усилителя это
- + величина, равная отношению приращения выходного напряжения к вызвавшей его активной составляющей выходного постоянного или синусоидального тока
- величина, равная отношению приращения входного напряжения к приращению активной составляющей входного тока
- величина, равная отношению приращения выходного напряжения к приращению активной составляющей входного тока
- величина, равная отношению приращения выходного тока к приращению входного напряжения
- 16. Как ненулевая разность входных токов реального операционного усилителя (ОУ) влияет на параметры усилителя, выполненного на основе этого ОУ?
- + уменьшает динамический диапазон усилителя на ОУ
- уменьшает минимально возможное входное напряжение усилителя на ОУ
- уменьшает максимально возможное выходное напряжение усилителя на ОУ
- увеличивает максимально возможное выходное напряжение усилителя на ОУ
- + увеличивает минимально возможное входное напряжение усилителя на ОУ
- увеличивает динамический диапазон усилителя на ОУ
- 17. Частота единичного усиления, относящаяся к динамическим параметрам операционного усилителя, это
- + частота, на которой собственный коэффициент усиления операционного усилителя уменьшается до 1
- частота, на которой собственный коэффициент усиления операционного усилителя становится практически равным нулю
- частота, на которой коэффициент усиления неинвертирующего усилителя на операционном усилителе уменьшается до 1
- частота, на которой коэффициент усиления неинвертирующего усилителя на операционном усилителе становится практически равным нулю
- 18. Коэффициент ослабления синфазного сигнала Коссф операционного усилителя это
- + отношение коэффициента усиления напряжения Ку к коэффициенту усиления синфазного сигнала Ксф
- отношение выходного синфазного напряжения к величине входного синфазного напряжения
- отношение выходного дифференциального напряжения к величине входного синфазного напряжения
- отношение выходного дифференциального напряжения к величине выходного синфазного напряжения
- 19. При работе реального ОУ с обратной связью коэффициент усиления можно считать зависящим только от величины обратной связи (и не зависящим от параметров ОУ) если
- + коэффициент усиления ОУ с обратной связью << собственного коэффициента ОУ (без обратной связи)
- коэффициент усиления ОУ с обратной связью >> собственного коэффициента ОУ (без обратной связи)
- + если правильно выбраны сопротивления резисторов, образующих обратную связь (RвхOУ >> R >> RвыхOУ)
- 20. В операционном усилителе с обратной связью (выбрать все правильные ответы)
- + при расширении полосы пропускания коэффициент усиления уменьшается
- + при увеличении коэффициента усиления происходит сужение полосы пропускания

- при расширении полосы пропускания коэффициент усиления увеличивается
- при уменьшении коэффициента усиления происходит сужение полосы пропускания
- 21. Какое условие необходимо выполнить при выборе сопротивления любого резистора R при проектировании схем на ОУ?
- + R_BXOУ >> R >> R_ВыхОУ
- RвхOУ >> R << RвыхОУ
- R_BXOУ << R >> R_ВыхОУ
- RвхOУ << R << RвыхОУ
- Можно выбирать с любым сопротивлением из номинального ряда
- 22. Какие приборы необходимы для измерения амплитудной характеристики усилителя на ОУ (выбрать только необходимые)?
- Вольтметр постоянного тока, милливольтметр, генератор стандартных сигналов
- Омметр
- Милливольтметр, генератор стандартных сигналов, частотомер
- Генератор стандартных сигналов, вольтметр постоянного тока
- Генератор стандартных сигналов, осциллограф
- + Милливольтметр, генератор стандартных сигналов
- 23. Какие приборы необходимы для измерения амплитудно-частотной характеристики усилителя на ОУ (выбрать только необходимые)?
- Вольтметр постоянного тока, милливольтметр, генератор стандартных сигналов
- Омметр, мультиметр
- + Милливольтметр, генератор стандартных сигналов, частотомер
- Генератор стандартных сигналов, вольтметр постоянного тока
- Генератор стандартных сигналов, осциллограф
- + Милливольтметр, генератор стандартных сигналов
- 24. Если одно из входных напряжений подать на неинвертирующий вход ОУ, а другое на его инвертирующий вход, то получится схема
- + аналогового вычитателя
- аналогового сумматора
- аналогового интегратора
- аналогового дифференциатора
- 25. В чем преимущества активных фильтров перед пассивными?
- большая величина динамического диапазона
- + большее значение добротности
- + возможность получения коэффициента передачи больше 1
- + более высокая стабильность
- + возможность плавной перестройки АЧХ
- не требуют источника питания
- меньший уровень шумов
- возможность самовозбуждения
- 26. На что влияет порядок активного фильтра?
- на величину динамического диапазона
- + на скорость затухания фильтра вне полосы прозрачности
- + на величину фазового сдвига на частоте среза
- на коэффициент передачи фильтра в полосе прозрачности
- на чувствительность передаточной характеристики к разбросу пассивных элементов схемы

- 27. На что влияет добротность активного фильтра?
- на величину динамического диапазона
- + на скорость затухания фильтра вне полосы прозрачности
- на величину фазового сдвига на частоте среза
- на коэффициент передачи фильтра в полосе прозрачности
- на чувствительность передаточной характеристики к разбросу пассивных элементов схемы
- 28. Как можно на практике определить частоту среза низкодобротного активного ФНЧ?
- на частоте среза выходное напряжение максимально
- + на частоте среза выходное напряжение составляет 0,7 от выходного напряжения в полосе прозрачности
- на частоте среза выходное напряжение составляет 1,0 от выходного напряжения в полосе прозрачности
- на частоте среза выходное напряжение в Q раз больше выходного напряжения в полосе прозрачности
- на частоте среза выходное напряжение составляет 0,7 от входного напряжения
- на частоте среза выходное напряжение составляет 0,1 от выходного напряжения в полосе прозрачности
- 29. Как можно на практике определить добротность среднедобротного активного ФНЧ?
- + добротность равна отношению выходного напряжения на частоте среза к выходному напряжению в полосе прозрачности
- добротность равна отношению выходного напряжения в полосе прозрачности к выходному напряжению на частоте среза
- добротность равна отношению входного напряжения на частоте среза к выходному напряжению в полосе прозрачности
- + добротность равна отношению максимального значения выходного напряжения к выходному напряжению в полосе прозрачности
- добротность равна отношению выходного напряжения на частоте среза к входному напряжению на этой частоте
- 30. Как можно на практике определить среднюю частоту активного полосового фильтра?
- + на средней частоте выходное напряжение максимально
- на средней частоте выходное напряжение составляет 0,7 от максимального значения выходного напряжения
- на средней частоте выходное напряжение составляет 0,7 от величины входного напряжения
- на средней частоте выходное напряжение минимально
- 31. Как можно на практике определить полосу пропускания активного полосового фильтра?
- + на нижней и верхней границе полосы пропускания уровень выходного напряжения составляет 0,7 от максимального значения выходного напряжения
- полоса пропускания составляет 0,7 от средней частоты
- на нижней и верхней границе полосы пропускания уровень выходного напряжения составляет 0,7 от значения входного напряжения
- 32. Как можно на практике определить добротность активного полосового фильтра?
- + добротность равна отношению средней частоты к полосе пропускания фильтра
- добротность равна отношению максимального выходного напряжения на средней частоте к входному напряжению
- добротность равна отношению максимального значения выходного напряжения к выходному напряжению на уровне 0,7

- добротность равна отношению полосы пропускания фильтра к средней частоте
- 33. Как можно на практике определить частоту режекции активного полоснозаграждающего фильтра?
- на частоте режекции выходное напряжение максимально
- на частоте режекции выходное напряжение составляет 0,7 от максимального значения выходного напряжения
- на частоте режекции выходное напряжение составляет 0,7 от минимального значения выходного напряжения
- + на частоте режекции выходное напряжение минимально
- 34. Как можно на практике определить полосу заграждения активного режекторного фильтра?
- + на нижней и верхней границе полосы заграждения уровень выходного напряжения составляет 0,7 от максимального значения выходного напряжения
- на нижней и верхней границе полосы заграждения уровень выходного напряжения составляет 0,7 от минимального значения выходного напряжения
- полоса заграждения составляет 0,7 от частоты режекции
- на нижней и верхней границе полосы пропускания уровень выходного напряжения составляет 0,7 от значения входного напряжения
- 35. Как можно на практике определить глубину режекции активного полоснозаграждающего фильтра?
- + глубина режекции равна отношению частоты режекции к полосе заграждения фильтра
- глубина режекции равна отношению минимального значения выходного напряжения на частоте режекции к входному напряжению
- глубина режекции равна отношению минимального значения выходного напряжения к выходному напряжению на уровне 0,7
- глубина режекции равна отношению полосы заграждения фильтра к частоте режекции 36. Источник тока (генератор стабильного тока) это элемент электрической схемы, который:
- + обеспечивает ток в нагрузке, не зависящий от сопротивления нагрузки
- вырабатывает требуемое значение тока
- + имеет очень большое внутреннее сопротивление
- 37. Основой большинства схем источников тока (генераторов стабильного тока), используемых в интегральных схемах, является:
- схема дифференциального каскада
- + схема токового зеркала
- 38. Базовой схемой входного каскада ОУ является:
- + дифференциальный каскад
- схема с ОЭ
- схема с ОИ
- различные каскодные схемы
- 39. Основным материалом монолитных интегральных СВЧ микросхем является:
- + арсенид галлия
- кремний
- германий
- 40. В арсенид галлиевых интегральных схемах в основном используются следующие транзисторные структуры:
 - + полевой транзистор с барьером Шоттки (MESFET)
 - + транзисторы на горячих электронах (НЕМТ)

- + биполярные гетеротранзисторы (НВТ)
- биполярные транзисторы с изолированным затвором (IGBT)
- биполярные транзисторы с барьером Шоттки

Составил старший преподаватель кафедры радиотехнических устройств

В.А. Степашкин

Заведующий кафедрой радиотехнических устройств д.т.н., профессор

Ю.Н. Паршин