МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Радиотехнические устройства»

«СОГЛАСОВАНО» Декан факультета РТ

/ И.С. Холопов

«*18*» 06 20 19 г

Заведующий кафедрой РТУ

«LP» 06 20 /9 г

«УТВЕРЖДАЮ» Проректор РОПиМД

(ФГБО И В А.В. Корячко

20 /9 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.01.01 «Электроника»

Направление подготовки 11.05.01. «Радиоэлектронные системы и комплексы»

Направленность (профиль) подготовки «Радионавигационные системы и комплексы»

Уровень подготовки специалитет

Квалификация выпускника – инженер

Формы обучения - очная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки 11.05.01 Радиоэлектронные системы и комплексы, утвержденного приказом Минобрнауки № 94 от 9.02.2018 г.

Разработчик

Старший преподаватель каф. РТУ

В.А.Степашкин

Программа рассмотрена и одобрена на заседании кафедры РТУ 30 мая 2019 г. (протокол N 10).

Заведующий кафедрой РТУ

Ю.Н.Паршин

1. Цель и задачи освоения дисциплины

Цель освоения дисциплины: изучение студентами физических принципов действия, характеристик, моделей и особенностей использования в радиотехнических цепях основных типов активных приборов, принципов построения и основ технологии микроэлектронных цепей, механизмов влияния условий эксплуатации на работу активных приборов и микроэлектронных цепей. При изучении этой дисциплины закладываются основы знаний, позволяющих умело использовать современную элементную базу радиоэлектроники и понимать тенденции и перспективы ее развития и практического использования; приобретаются навыки расчета режимов активных приборов в электронных цепях, экспериментального исследования их характеристик, измерения параметров и построения базовых ячеек электронных цепей, содержащих такие приборы.

Задачи модуля 1: изучить материалы электронной техники и их электрофизические свойства: основные понятия и определения, историю и перспективы электроники, основные положения теории электропроводности твердых тел, кристаллическую структуру чистого полупроводника, примесные полупроводники.

Задачи модуля 2: изучить p-n-переход: виды электрических переходов в полупроводниках, электронно-дырочные переход и его свойства при отсутствии внешнего поля, а также при воздействии прямого и обратного напряжений, переходы металл-полупроводник, характеристики p-n-перехода, пробои p-n-переходов, емкости p-n-перехода и основные технологические процессы изготовления p-n-переходов.

Задачи модуля 3: изучить полупроводниковые диоды: основные понятия и принципы, эквивалентные схемы, выпрямительные диоды, импульсные диоды, стабилитроны, варикапы и диоды других типов.

Задачи модуля 4: изучить биполярные транзисторы: основные понятия и принципы, схемы включения транзистора, влияние режима работы транзистора и температуры окружающей среды на его параметры и характеристики, модели биполярных транзисторов, их частотные свойства и собственные шумы, а также технологии изготовления биполярных транзисторов.

Задачи модуля 5: изучить полевые транзисторы: общие понятия и принципы, полевые транзисторы с управляющим p-n-переходом, МДП транзисторы со встроенным и индуцированным каналом, полевые транзисторы с барьером Шоттки и гетеропереходом.

Задачи модуля 6: изучить фотоэлектрические и излучательные приборы: фоторезисторы, фотодиоды, фототранзисторы, фототиристоры, светодиоды, оптроны, инжекционный лазер.

Задачи модуля 7: изучить элементы интегральных схем: классификацию интегральных микросхем и их основные компоненты.

Задачи модуля 8: изучить приборы вакуумной электроники: общие понятия и принципы, электровакуумный диод, электровакуумный триод, многоэлектродные электровакуумные лампы, электровакуумные микролампы, индикаторные приборы, СВЧ электронные лампы.

2. Место дисциплины в структуре ОПОП

Дисциплина «Электроника» относится к части, формируемой участниками образовательных отношений, блока №1 дисциплин основных профессиональных образовательных программ (ОПОП) (ОПОП) «Радионавигационные системы и комплексы», «Радиоэлектронная борьба», «Радиосистемы и комплексы управления», «Радиоэлектронные системы информации» по направлению подготовки специалитета 11.05.01. «Радиоэлектронные системы и комплексы».

Студенты, обучающиеся по данному курсу, должны предварительно изучить дисциплины «Физика», «Теория электрических цепей», входящие в обязательную часть вышеуказанных ОПОП.

Дисциплина «Электроника» является основой для дальнейшего изучения дисциплин профессионального цикла и подготовки выпускной работы.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО, ПООП (при наличии) по данному направлению подготовки, а также компетенций (при наличии), установленных университетом.

Профессиональные компетенции выпускников и индикаторы их достижения

Код	Формулировка компетенции	Индикаторы достижения			
ПК-2	Способен разрабатывать	ИД-1пк-2 Знать принципы проектирования радио-			
	структурные и	электронных систем и комплексов.			
	функциональные схемы	ИД-2 _{ПК-2} Уметь проводить расчеты характеристик радиоэлектронных устройств, радиоэлектронных			
	радиоэлектронных систем и				
	комплексов, а также				
	принципиальные схемы	систем и комплексов			
	радиоэлектронных устройств	ИД-3 _{ПК-2} Владеть навыками разработки			
	с применением современных	принципиальных схем радиоэлектронных			
	САПР и пакетов прикладных	устройств с применением современных САПР и			
	программ	пакетов прикладных программ.			

4. Структура и содержание дисциплины

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетные единицы (144 часов).

ı	
Всего	Семестры
часов	4
48	48
32	32
16	16
51	51
51	51
45	45
	экзамен
144	144
4	4
	часов 48 32 16 51 51 45 144

4.2. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

No	Тема			Контакт	гная работ	a	
п/		Общая			Самосто		
П		трудоемк	с преподавателем			I	ятельная
		ость,	всего	лекции	лаборат	практич	работа
		всего			орные	еские	обучающ
		часов			работы	занятия	ихся
1	2	3	4	5	6	(упр) 7	8
1	Всего	144	48	32	16	,	51
	Модуль 1	9	4	4	10		5
	Введение. Материалы электрон-						
	ной техники и их элек-						
	трофизические свойства						
1.1	Основные понятия и	4.5	1	1			3.5
	определения. История и						
	перспективы электроники						
1.2	Основные положения теории	1.5	1	1			0.5
	электропроводности твердых тел						
1.3	Кристаллическая структура чи-	1.5	1	1			0.5
	стого полупроводника						
1.4	Примесные полупроводники	1.5	1	1			0.5
	Модуль 2	12	4	4			8
	Р-п-переход						
2.1	Электрические переходы в полу-	0.75	0.25	0.25			0.5
	проводниках						
2.2	Электронно-дырочные переход и	1.25	0.75	0.75			0.5
	его свойства при отсутствии						
	внешнего поля						
2.3	Электронно-дырочный переход и	2	0.5	0.5			1.5
	его свойства при воздействии						
	прямого напряжения						
2.4	Электронно-дырочный переход и	2	0.5	0.5			1.5
	его свойства при воздействии об-						
	ратного напряжения						
2.5	Переходы металл-полупроводник	1.5	1	1			0.5
2.6	Свойства и характеристики р-п-	2	0.5	0.5			1.5
	перехода						
2.7	Пробои р-п-переходов	0.5	0.25	0.25			0.25
2.8	Емкости р-п-перехода	0.5	0.25	0.25			0.25
2.9	Основные технологические про-	1.5					1.5
	цессы изготовления р-п-						
	переходов						
	Модуль 3	17	9	5	4		8
	Полупроводниковые диоды				ļ _		
3.1	Основные понятия и принципы	6	4.5	1.5	3		1.5
3.2	Эквивалентная схема	2	1.5	0.5	1		0.5
3.3	Выпрямительные диоды	1	0.5	0.5			0.5
3.4	Импульсные диоды	1	0.5	0.5			0.5

3.5	Стабилитроны	2.5	1	1		1.5
3.6	Варикапы	2.5	1	1		1.5
3.7	Диоды других типов	2				2
	Модуль 4	28	16	8	8	12
	Биполярные транзисторы					
4.1	Основные понятия и принципы	1.5	1	1		0.5
4.2	Схема включения транзистора с	7.5	5	1	4	2.5
	общей базой					
4.3	Схема включения транзистора с	7.5	5	1	4	2.5
	общим эмиттером					
4.4	Схема включения транзистора с	2.5	1	1		1.5
	общим коллектором					
4.5	Влияние режима работы	2.5	1	1		1.5
	транзистора и температуры					
	окружающей среды на его					
	параметры и характеристики					
4.6	Модели биполярных	2.5	2	2		0.5
	транзисторов					
4.7	Частотные свойства биполярных	1.5	1	1		0.5
	транзисторов					
4.8	Собственные шумы биполярных	1.5				1.5
	транзисторов					
4.9	Технология изготовления	1				1
	биполярных транзисторов		1			
	Модуль 5	10	4	4		6
- 1	Полевые транзисторы	2	0.5	0.5		7.5
5.1	Общие понятия и принципы	2	0.5	0.5		1.5
5.2	Полевые транзисторы с	2	0.5	0.5		1.5
<i>5</i> 2	управляющим р-п-переходом	1.5	1	1		0.5
5.3	МДП транзисторы со	1.5	1	1		0.5
5.4	встроенным каналом	1.5	1	1		0.5
3.4	МДП транзисторы с	1.3				0,5
5.5	индуцированным каналом Полевые транзисторы с барьером	1.5	1	1		0.5
5.5	Шоттки	1.3				0.5
5.6	Полевые транзисторы с	1.5				1.5
3.0	управляющим переходом металл-	1.5				1.5
	полупроводник и					
	гетеропереходом					
	Модуль 6	5	2	2		3
	Фотоэлектрические и		-			
	излучательные приборы					
6.1	Фотодиоды	1.5	1	1		0.5
6.2	Светодиоды	1	0.5	0.5		0.5
6.3	Оптроны	0.75	0.25	0.25		0.5
6.4	Инжекционный лазер	0.75	0.25	0.25		0.5
6.5	Фоторезисторы	0.25				0.25
6.6	Фототранзисторы	0.5				0.5
6.7	Фототиристоры	0.25				0.25
	Модуль 7	7	5	1	4	2
	Элементы интегральных схем					

7.1	Классификация интегральных микросхем	1	0.5	0.5		0.5
7.2	Основные компоненты	6	4.5	0.5	4	1.5
	интегральных схем					
	Модуль 8	11	4	4		7
	Приборы вакуумной электроники					
8.1	Общие понятия и принципы	1	0.5	0.5		0.5
8.2	Электровакуумный диод	1	0.5	0.5		0.5
8.3	Электровакуумный триод	1.5	1	1		0.5
8.4	Многоэлектродные	2	1.5	1.5		0.5
	электровакуумные лампы					
8.5	Электровакуумные микролампы	1	0.5	0.5		0.5
8.6	Индикаторные приборы	2				2
8.7	СВЧ электронные лампы	2.5				2.5
	Контроль (экзамен)	45				
	Всего	144	48	32	16	51

4.3 Содержание дисциплины

4.3.1 Лекционные занятия

№ п/п	№ разд.	Темы лекционных занятий	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
	1	Модуль 1	3	ПК-2	Экзамен
		Введение. Электроника в			
		современной науке и технике.			
		Электронные приборы. Краткая			
		история и перспективы развития			
		электроники. Материалы			
		электронной техники.			
		Электрические переходы.			
1	1.1	Основные понятия и определения.	1	ПК-2	Экзамен
		История и перспективы			
		электроники			
	1.2	Основные положения теории	1	ПК-2	Экзамен
		электропроводности твердых тел			
2	1.3	Кристаллическая структура чисто-	1	ПК-2	Экзамен
		го полупроводника			
	1.4	Примесные полупроводники	1	ПК-2	Экзамен
	2	Модуль 2	4	ПК-2	Экзамен
		Р-п-переход			
3	2.1	Электрические переходы в полу-	0.25	ПК-2	Экзамен
		проводниках			
	2.2	Электронно-дырочные переход и	0.75	ПК-2	Экзамен
		его свойства при отсутствии			
		внешнего поля			
	2.3	Электронно-дырочный переход и	0.5	ПК-2	Экзамен
		его свойства при воздействии пря-			
		мого напряжения			
	2.4	Электронно-дырочный переход и	0.5	ПК-2	Экзамен
		его свойства при воздействии об-			

		ратного напряжения			
4	2.5	Переходы металл-полупроводник	1	ПК-2	Экзамен
7	2.6	Свойства и характеристики р-п-	0.5	ПК-2	Экзамен
	2.0	перехода	0.5	1110 2	Skamen
	2.7	Пробои р-п-переходов	0.25	ПК-2	Экзамен
	2.8	Емкости р-п-перехода	0.25	ПК-2	Экзамен
	3	Модуль 3	5	ПК-2	Экзамен
		Полупроводниковые диоды	J	111(2	SKSasnen
5	3.1	Основные понятия и принципы	1.5	ПК-2	Экзамен
	3.2	Эквивалентная схема	0.5	ПК-2	Экзамен
6	3.3	Выпрямительные диоды	0.5	ПК-2	Экзамен
U	3.4	Импульсные диоды	0.5	ПК-2	Экзамен
	3.5	Стабилитроны	1	ПК-2	Экзамен
7	3.6	Варикапы	1	ПК-2	Экзамен
,	3.0	Модуль 4	8	ПК-2 ПК-2	Экзамен
	4		o	11K-2	Экзимен
7	4.1	<i>Биполярные транзисторы</i> Основные понятия и принципы	1	ПК-2	Экзамен
8	4.1	•	1	ПК-2	Экзамен
0	4.2	Схема включения транзистора с общей базой	1	11K-2	Экзамен
	4.3	Схема включения транзистора с	1	ПК-2	Экзамен
	4.5	общим эмиттером	1	11112	JRSamen
9	4.4	Схема включения транзистора с	1	ПК-2	Экзамен
,	7.7	общим коллектором	1	1111-2	JRSamen
	4.5	Влияние режима работы	1	ПК-2	Экзамен
	1.5	транзистора и температуры	1	1110 2	O ROUNCII
		окружающей среды на его			
		параметры и характеристики			
10	4.6	Модели биполярных транзисторов	2	ПК-2	Экзамен
11	4.7	Частотные свойства биполярных	<u></u>	ПК-2	Экзамен
		транзисторов	_		
	5	Модуль 5	4	ПК-2	Экзамен
		Полевые транзисторы			
11	5.1	Общие понятия и принципы	0.5	ПК-2	Экзамен
	5.2	Полевые транзисторы с	0.5	ПК-2	Экзамен
		управляющим р-п-переходом			
12	5.3	МДП транзисторы со встроенным	1	ПК-2	Экзамен
		каналом			
	5.4	МДП транзисторы с	1	ПК-2	Экзамен
		индуцированным каналом			
13	5.5	Полевые транзисторы с барьером	1	ПК-2	Экзамен
		Шоттки			
	6	Модуль 6	1	ПК-2	Экзамен
		Фотоэлектрические и			
		излучательные приборы			
13	6.1	Фотодиоды	1	ПК-2	Экзамен
14	6.2	Светодиоды	0.5	ПК-2	Экзамен
	6.3	Оптроны	0.25	ПК-2	Экзамен
	6.4	Инжекционный лазер	0.25	ПК-2	Экзамен
	7	Модуль 7	1	ПК-2	Экзамен
	<u> </u>	Элементы интегральных схем			
14	7.1	Классификация интегральных	0.5	ПК-2	Экзамен

		микросхем			
	7.2	Основные компоненты	1.5	ПК-2	Экзамен
		интегральных схем			
	8	Модуль 8	4	ПК-2	Экзамен
		Приборы вакуумной электроники			
15	8.1	Общие понятия и принципы	0.5	ПК-2	Экзамен
	8.2	Электровакуумный диод	0.5	ПК-2	Экзамен
	8.3	Электровакуумный триод	1	ПК-2	Экзамен
16	8.4	Многоэлектродные	1.5	ПК-2	Экзамен
		электровакуумные лампы			
	8.5	Электровакуумные микролампы	0.5	ПК-2	Экзамен

4.3.2 Лабораторные работы

№ π/π	№ разд.	Темы лабораторных работ	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
1	7.2	Исследование пассивных элементов интегральных схем	4	ПК-2	Экзамен
2	3.1, 3.2	Исследование интегрального диода	4	ПК-2	Экзамен
3	4.3	Исследование интегрального би- полярного транзистора в схеме с ОЭ	4	ПК-2	Экзамен
4	4.2	Исследование интегрального би- полярного транзистора в схеме с ОБ	4	ПК-2	Экзамен

4.3.3 Самостоятельная работа

№ разд.	Темы лекционных занятий	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
	Модуль 1	5	ПК-2	Экзамен
1	Введение. Материалы электронной			
	техники и их электрофизические свойства			
1.1	Основные понятия и определения.	3.5	ПК-2	Экзамен
	История и перспективы электроники			
1.2	Основные положения теории элек-	0.5	ПК-2	Экзамен
	тропроводности твердых тел			
1.3	Кристаллическая структура чистого	0.5	ПК-2	Экзамен
	полупроводника			
1.4	Примесные полупроводники	0.5	ПК-2	Экзамен
2	Модуль 2	8	ПК-2	Экзамен
	P-n-nepexod			
2.1	Электрические переходы в полупро-	0.5	ПК-2	Экзамен
	водниках			
2.2	Электронно-дырочные переход и его	0.5	ПК-2	Экзамен
	свойства при отсутствии внешнего			
	поля			

2.3	Электронно-дырочный переход и его свойства при воздействии прямого	1.5	ПК-2	Экзамен
	напряжения			
2.4	Электронно-дырочный переход и его свойства при воздействии обратного напряжения	1.5	ПК-2	Экзамен
2.5	Переходы металл-полупроводник	0.5	ПК-2	Экзамен
2.6	Свойства и характеристики p-n- перехода	1.5	ПК-2	Экзамен
2.7	Пробои р-п-переходов	0.25	ПК-2	Экзамен
2.8	Емкости р-п-перехода	0.25	ПК-2	Экзамен
2.9	Основные технологические процессы изготовления р-n-переходов	1.5	ПК-2	Экзамен
3	Модуль 3 Полупроводниковые диоды	8	ПК-2	Экзамен
3.1	Основные понятия и принципы	1.5	ПК-2	Экзамен
3.2	Эквивалентная схема	0.5	ПК-2	Экзамен
3.3	Выпрямительные диоды	0.5	ПК-2	Экзамен
3.4	Импульсные диоды	0.5	ПК-2	Экзамен
3.5	Стабилитроны	1.5	ПК-2	Экзамен
3.6	Варикапы	1.5	ПК-2	Экзамен
3.7	Диоды других типов	2		
4	Модуль 4 Биполярные транзисторы	12	ПК-2	Экзамен
4.1	Основные понятия и принципы	0.5	ПК-2	Экзамен
4.2	Схема включения транзистора с общей базой	2.5	ПК-2	Экзамен
4.3	Схема включения транзистора с общим эмиттером	2.5	ПК-2	Экзамен
4.4	Схема включения транзистора с общим коллектором	1.5	ПК-2	Экзамен
4.5	Влияние режима работы транзистора и температуры окружающей среды на его параметры и характеристики	1.5	ПК-2	Экзамен
4.6	Модели биполярных транзисторов	0.5	ПК-2	Экзамен
4.7	Частотные свойства биполярных транзисторов	0.5	ПК-2	Экзамен
4.8	Собственные шумы биполярных транзисторов	1.5	ПК-2	Экзамен
4.9	Технология изготовления биполярных транзисторов	1	ПК-2	Экзамен
5	Модуль 5 Полевые транзисторы	6	ПК-2	Экзамен
5.1	Общие понятия и принципы	1.5	ПК-2	Экзамен
5.2	Полевые транзисторы с управляющим р-п-переходом	1.5	ПК-2	Экзамен
5.3	МДП транзисторы со встроенным каналом	0.5	ПК-2	Экзамен
5.4	МДП транзисторы с индуцированным каналом	0,5	ПК-2	Экзамен
5.5	Полевые транзисторы с барьером	0.5	ПК-2	Экзамен

	Шоттки			
5.6	Полевые транзисторы с управляющим переходом металл-	1.5	ПК-2	Экзамен
_	полупроводник и гетеропереходом			
6	Модуль 6	3	ПК-2	Экзамен
	Фотоэлектрические и излучатель-			
	ные приборы			
6.1	Фотодиоды	0.5	ПК-2	Экзамен
6.2	Светодиоды	0.5	ПК-2	Экзамен
6.3	Оптроны	0.5	ПК-2	Экзамен
6.4	Инжекционный лазер	0.5	ПК-2	Экзамен
6.5	Фоторезисторы	0.25	ПК-2	Экзамен
6.6	Фототранзисторы	0.5	ПК-2	Экзамен
6.7	Фототиристоры	0.25	ПК-2	Экзамен
7	Модуль 7	2	ПК-2	Экзамен
	Элементы интегральных схем			
7.1	Классификация интегральных мик-	0.5	ПК-2	Экзамен
	росхем			
7.2	Основные компоненты интеграль-	1.5	ПК-2	Экзамен
	ных схем			
8	Модуль 8	7	ПК-2	Экзамен
	Приборы вакуумной электроники			
8.1	Общие понятия и принципы	0.5	ПК-2	Экзамен
8.2	Электровакуумный диод	0.5	ПК-2	Экзамен
8.3	Электровакуумный триод	0.5	ПК-2	Экзамен
8.4	Многоэлектродные электровакуум-	0.5	ПК-2	Экзамен
	ные лампы			
8.5	Электровакуумные микролампы	0.5	ПК-2	Экзамен
8.6	Индикаторные приборы	2	ПК-2	Экзамен
8.7	СВЧ электронные лампы	2.5	ПК-2	Экзамен

5. Оценочные материалы для проведения промежуточной аттестации обучающихся по дисциплине

Оценочные материалы для проведения промежуточной аттестации обучающихся по дисциплине приведены в Приложении к рабочей программе дисциплины.

6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Основная учебная литература:

- 1. Разинкин В.П. Электроника. Часть 2 [Электронный ресурс] : учебное пособие / В.П. Разинкин. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2014. 106 с. 978-5-7782-2530-5. Режим доступа: http://www.iprbookshop.ru/45203.html
- 2. Легостаев Н.С. Твердотельная электроника [Электронный ресурс] : учебное пособие / Н.С. Легостаев, К.В. Четвергов. Электрон. текстовые данные. Томск: Томский госу-

дарственный университет систем управления и радиоэлектроники, Эль Контент, 2011. — 244 с. — 978-5-4332-0021-0. — Режим доступа: http://www.iprbookshop.ru/13981.html

- 3. Вакуумная микроволновая электроника. Физико-технические основы [Электронный ресурс] : учебное пособие / А.И. Астайкин [и др.]. Электрон. текстовые данные. Саров: Российский федеральный ядерный центр ВНИИЭФ, 2012. 377 с. 978-5-9515-0197-4. Режим доступа: http://www.iprbookshop.ru/60839.html
- 4. Полупроводниковые приборы и пассивные элементы интегральных схем: метод. указ к лаб. работам / Степашкин Владимир Анатольевич, Озеран Светлана Петровна; РГРТУ. Рязань, 2017. 56с.

6.2. Дополнительная учебная литература:

- 1. Ситникова С.В. Сборник задач по дисциплине «Электроника» [Электронный ресурс] : учебно-методическое пособие / С.В. Ситникова, А.С. Арефьев. Электрон. текстовые данные. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2016. 60 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/71877.html
- 2. Водовозов А.М. Основы электроники [Электронный ресурс] : учебное пособие / А.М. Водовозов. Электрон. текстовые данные. М. : Инфра-Инженерия, 2016. 140 с. 978-5-9729-0137-1. Режим доступа: http://www.iprbookshop.ru/51731.html
- 3. Левин Б.Х. Упражнения по основам электроники [Электронный ресурс] / Б.Х. Левин. Электрон. текстовые данные. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2010. 46 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/55463.html
- 4. Электроника и микропроцессорная техника: Учеб. / Гусев Владимир Георгиевич, Гусев Юрий Матвеевич. 3-е изд.,перераб.и доп. М.:Высш.шк., 2005. 790с.
- 5. Электроника: Учеб.пособие для втузов / В. И. Лачин, Н. С. Савелов. Ростов-на-Дону:Феникс, 2000. 446с.
- 6. Электроника : Учеб. / Щука Александр Александрович ; Под ред.Сигова А.С. СПб.:БХВ-Петербург, 2006. 800с.
- 7. Электроника: учеб. для прикладного бакалавриата / Миловзоров Олег Владимирович, Панков Иван Григорьевич. 6-изд., перераб. и доп. М.: Юрайт, 2017. 345с.
 - 8. Жеребцов И.П. Основы электроники. Л.: Энергоатомиздат, 1989 352с.
- 9. Прянишников В.А. Электроника: Полный курс лекций. СПб.: КОРОНА принт, 2004.-416c.
- 10. Ульрих Титце Полупроводниковая схемотехника. Том I [Электронный ресурс] / Титце Ульрих, Шенк Кристоф. Электрон. текстовые данные. Саратов: Профобразование, 2017. 826 с. 978-5-4488-0052-8. Режим доступа: http://www.iprbookshop.ru/63579.html.

6.3. Методические указания к лабораторным работам

1. Полупроводниковые приборы и пассивные элементы интегральных схем: метод. указ. к лаб. работам / Степашкин Владимир Анатольевич, Озеран Светлана Петровна; РГРТУ. - Рязань, 2017. - 56с.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

1. Электронно-библиотечная система «IPRbooks» [Электронный ресурс]. – Режим доступа: доступ из корпоративной сети РГРТУ – свободный, доступ из сети Интернет – по паролю. – URL: https://iprbookshop.ru/.

- 2. Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://www.e.lanbook.com.
- 3. Электронная библиотека РГРТУ [Электронный ресурс]. Режим доступа: из корпоративной сети РГРТУ по паролю. URL: http://elib.rsreu.ru/

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)

- 1. Операционная система Windows XP (Microsoft MSDN AA, номер подписки 700102019, бессрочно);
- 2. LibreOffice (свободное ПО, Mozilla Public License 2.0, GNU Lesser General Public License 2.1, GNU Lesser General Public License 3.0, GNU General Public License 3.0);
 - 3. SumatraPDF (свободное ПО, GNU GPLv3);
- 4. Kaspersky Endpoint Security Коммерческая лицензия на 1000 компьютеров №2304-180222-115814-600-1595).

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

- 1. Аудитория 413к2. Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. 60 мест, 1 мультимедиа проектор, 1 экран, компьютер, специализированная мебель, маркерная доска.
- 2. Аудитория 415к2. Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. 50 мест, 1 мультимедиа проектор, 1 экран, компьютер, специализированная мебель, маркерная доска.
- 3. Аудитории 412к2. Лаборатория электроники и микросхемотехники для проведения занятий по профильным дисциплинам, групповых и индивидуальных консультаций, а также для самостоятельной работы студентов. Оборудование: учебнолабораторные стенды по электронике со сменными панелями, генераторы сигналов, милливольметры двухканальные, мультиметры, частотомеры, вольтметры универсальные.
- 4. Аудитория 410к2. Помещение для хранения и профилактического обслуживания учебного оборудования. Шкафы, стеллажи для хранения учебного оборудования, контрольно-измерительная техника и инструменты для профилактического обслуживания учебного оборудования.

Программу составил Старший преподаватель кафедры РТУ

В.А.Степашкин