МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет им. В.Ф. Уткина»

Кафедра «Систем автоматизированного проектирования вычислительных средств»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Эволюционные методы оптимизации»

Направление подготовки 02.04.02 – «Фундаментальная информатика и информационные технологии»

Направленность (профиль) подготовки «Нейросетевые технологии и интеллектуальный анализ данных»

Квалификация выпускника – магистр

Формы обучения – очная

1 ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы – это совокупность учебно-методических материалов (практических заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель – оценить соответствие знаний, умений и владений, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Основная задача – обеспечить оценку уровня сформированности компетенций.

Контроль знаний обучающихся проводится в форме промежуточной аттестации.

Промежуточная аттестация проводится в форме экзамена. Форма проведения экзамена - тестирование, письменный опрос по теоретическим вопросам и выполнение практических заданий.

2 ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции (или ее части) в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Уровень освоения компетенций, формируемых дисциплиной:

Описание критериев и шкалы оценивания тестирования:

Шкала оценивания	Критерий			
3 балла	уровень усвоения материала, предусмотренного программой: про-			
(эталонный уровень)	цент верных ответов на тестовые вопросы от 85 до 100%			
2 балла	уровень усвоения материала, предусмотренного программой: про-			
(продвинутый уровень)	цент верных ответов на тестовые вопросы от 70 до 84%			
1 балл	уровень усвоения материала, предусмотренного программой: про-			
(пороговый уровень)	цент верных ответов на тестовые вопросы от 50 до 69%			
0 баллов	уровень усвоения материала, предусмотренного программой: про-			
	цент верных ответов на тестовые вопросы от 0 до 49%			

Описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий
3 балла	выставляется студенту, который дал полный ответ на вопрос, пока-
(эталонный уровень)	зал глубокие систематизированные знания, смог привести примеры,
	ответил на дополнительные вопросы преподавателя
2 балла	выставляется студенту, который дал полный ответ на вопрос, но на
(продвинутый уровень)	некоторые дополнительные вопросы преподавателя ответил только с
	помощью наводящих вопросов
1 балл	выставляется студенту, который дал неполный ответ на вопрос в би-
(пороговый уровень)	лете и смог ответить на дополнительные вопросы только с помощью
	преподавателя
0 баллов	выставляется студенту, который не смог ответить на вопрос

Описание критериев и шкалы оценивания практического задания:

Шкала оценивания	Критерий
3 балла	Задача решена верно
(эталонный уровень)	
2 балла	Задача решена верно, но имеются неточности в логике решения
(продвинутый уровень)	
1 балл	Задача решена верно, с дополнительными наводящими вопросами
(пороговый уровень)	преподавателя
0 баллов	Задача не решена

На промежуточную аттестацию выносится тест, два теоретических вопроса и одна задача. Максимально студент может набрать 12 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «отлично», «хорошо», «удовлетворительно» и «неудовлетворительно».

Оценка «отлично» выставляется студенту, который набрал в сумме 12 баллов (выполнил все задания на эталонном уровне). Обязательным условием является выполнение всех предусмотренных в течение семестра лабораторных работ и практических заданий.

Оценка «**хорошо**» выставляется студенту, который набрал в сумме от 8 до 11 баллов при условии выполнения всех заданий на уровне не ниже продвинутого. Обязательным условием является выполнение всех предусмотренных в течение семестра лабораторных работ и практических заданий.

Оценка «удовлетворительно» выставляется студенту, который набрал в сумме от 4 до 7 баллов при условии выполнения всех заданий на уровне не ниже порогового. Обязательным условием является выполнение всех предусмотренных в течение семестра лабораторных работ и практических заданий.

Оценка «**неудовлетворительно**» выставляется студенту, который набрал в сумме менее 4 баллов или не выполнил всех предусмотренных в течение семестра лабораторных работ и практических заданий.

З ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия	
Тема 1. Математическая постановка задачи	ОПК-1, ОПК-3	экзамен	
оптимизации			
Тема 2. Классификация задач оптимизации	ОПК-1, ОПК-3	экзамен	
Тема 3. Линейная оптимизация	ОПК-1, ОПК-3	экзамен	
Тема 4. Дискретная оптимизация	ОПК-1, ОПК-3	экзамен	
Тема 5. Регулярные методы нелинейной оп-	ОПК-1, ОПК-3	экзамен	
тимизации			
Тема 6. Случайные методы оптимизации	ОПК-1, ОПК-3	экзамен	
Тема 7. Простой генетический алгоритм	ОПК-1, ОПК-3	экзамен	
Тема 8. Генетические алгоритмы решения	ОПК-1, ОПК-3	экзамен	
прикладных задач			
Тема 9. Модификации и развитие генетиче-	ОПК-1, ОПК-3	экзамен	
ских алгоритмов			
Тема 10. Оптимизация роем частиц	ОПК-1, ОПК-3	экзамен	
Тема 11.Алгоритмы колонии муравьев и пче-	ОПК-1, ОПК-3	экзамен	
линого роя			

4 ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация в форме экзамена

Код компетенции	Результаты освоения ОПОП					
	Содержание компетенций					
ОПК-1	Способен находить, формулировать и решать актуальные проблемы					
	прикладной математики, фундаментальной информатики и информа-					
	ционных технологий					
ОПК-1.1. Понимает сущность актуальных проблем прикладной математики, фундаментальной						
информатики и информационных технологий						
ОПК-1.2. Демонстрирует навыки использования прикладной математики, фундаментальной						
информатики и информационных технологий						
ОПК-3	Способен проводить анализ математических моделей, создавать ин-					
	новационные методы решения прикладных задач профессиональной					
	деятельности в области информатики и математического моделиро-					
	вания					
ОПК-3.1. Проводит анализ математических моделей для решения прикладных задач профес-						
сиональной деятельности в области информатики и математического моделирования						
ОПК-3.2. Разрабатывает инновационные методы решения прикладных задач профессиональ-						
ной деятельности в области информатики и математического моделирования						

Типовые тестовые вопросы

Наименование секции: Введение в методы оптимизации

Вопрос 1. К какому классу задач относятся задачи оптимизации? Ответы:

- 1. Задачи анализа
- +2. Задачи синтеза

Вопрос 2. Укажите задачи, которые относятся к задачам анализа. Ответы:

- 1. Разработка структуры вычислительного устройства
- +2. Оценка надежности электронного устройства
- 3. Определение номинальных значений элементов электронного устройства
- +4. Получение зависимости уровня помех в электронном устройстве от температуры окружающей среды

Вопрос 3. Укажите задачи, которые относятся к задачам синтеза. Ответы:

- +1. Принципиальной электрической схемы блока электропитания
- 2. Оценка работоспособности электронного устройства в различных тепловых режимах
- 3. Исследование пропускной способности каналов связи
- +4. Разработка технологического процесса сборки механического устройства

Вопрос 4. Укажите задачи, которые относятся к задачам оптимизации. Ответы:

- 1. Определение характеристик электронного устройства в заданных режимах функционирования
- +2. Выбор режима функционирования электронного устройства, обеспечивающего получение наилучших значений выходных характеристик
- 3. Разработка электронного устройства с заданным предельным уровнем энергопотребления
- +4. Разработка вычислительного устройства с наименьшими габаритами

Bonpoc 5. Каким образом критерий оптимальности позволяет сравнить варианты возможных решений некоторой прикладной задачи? Ответы:

- 1. Качественно
- +2. Количественно
- 3. Качественно и количественно

Вопрос 6. Укажите, чем определяется множество допустимых решений в задачах оптимизации. Ответы:

- 1. Возможными значениями критерия оптимальности
- +2. Возможными значениями управляемых параметров
- +3. Ограничениями, присутствующими в постановке задачи

Bonpoc 7. Могут ли отсутствовать ограничения в постановке задачи оптимизации? Введите «да» или «нет». Ответ: да

Bonpoc 8. Укажите классификационный признак, в соответствии с которым выделяют унимодальные задачи оптимизации. Ответы:

- 1. Наличие ограничений в постановке задачи
- 2. Количество управляемых параметров задачи
- +3. Количество экстремумов целевой функции в области допустимых решений
- 4. Количество показателей оптимальности

Вопрос 9. Укажите классификационный признак, в соответствии с которым используют термин «условный экстремум». Ответы:

- +1. Наличие ограничений в постановке задачи
- 2. Количество управляемых параметров задачи
- 3. Количество экстремумов целевой функции в области допустимых решений
- 4. Количество показателей оптимальности

Вопрос 10. Укажите классификационный признак, в соответствии с которым выделяют векторные задачи оптимизации. Ответы:

- 1. Наличие ограничений в постановке задачи
- 2. Количество управляемых параметров задачи
- 3. Количество экстремумов целевой функции в области допустимых решений
- +4. Количество показателей оптимальности

Вопрос 11. Укажите виды обобщенных критериев оптимальности, которые позволяют получить примерное равенство конфликтующих частных показателей в многокритериальных задачах оптимизации. Ответы:

- 1. Аддитивный критерий
- 2. Мультипликативный критерий
- 3. Главный критерий
- +4. Минимаксный критерий
- +5. Максиминный критерий

Bonpoc 12. Какой из перечисленных методов решения многокритериальных задач оптимизации требует, чтобы частные показатели качества были упорядочены по степени их важности? Ответы:

- 1. Метод обобщенного критерия
- 2. Метод главного критерия
- +3. Метод последовательных уступок
- 4. Метод минимакса

Bonpoc 13. Какой из указанных методов позволяет эксперту одинаково оценить важность нескольких частных критериев оптимальности? Ответы:

- 1. Метод ранжирования
- +2. Метод приписывания баллов

Bonpoc 14. По каким из перечисленных признаков классифицируются задачи математического программирования? Ответы:

- 1. По наличию ограничений в постановке задачи
- +2. По виду целевой функции
- +3. По виду ограничений

Вопрос 15. Укажите варианты, когда задача математического программирования относится к классу задач нелинейного программирования. Ответы:

- +1. Целевая функция является линейной, а множество допустимых решения невыпуклым множеством
- 2. Целевая функция является линейной, а множество допустимых решений описывается линейными функциями
- +3. Целевая функция является нелинейной, а множество допустимых решений описывается линейными функциями

Вопрос 16. Укажите классификационный признак, в соответствии с которым среди задач математического программирования выделяют класс задач дискретного программирования. Ответы:

- 1. Вид целевой функции
- 2. Вид функций, определяющих ограничения
- +3. Характер области допустимых решений

Вопрос 17. Для какого класса задач нелинейного программирования локальный экстремум целевой функции всегда совпадает с глобальным экстремумом? Ответы:

- 1. Задача квадратичного программирования
- +2. Задача выпуклого программирования
- 3. Задача невыпуклого программирования

Вопрос 18. Для каких из перечисленных задач нелинейного программирования локальный экстремум целевой функции может совпадать с глобальным экстремумом. Ответы:

- +1. Задача квадратичного программирования
- +2. Задача выпуклого программирования
- 3. Задача невыпуклого программирования

Bonpoc 19. Укажите признак, характеризующий задачу квадратичного программирования. Ответы:

- 1. Целевая функция является линейной
- 2. Целевая функция является квадратичной
- +3. Целевая функция является суммой линейной и квадратичной функций

Вопрос 20. Укажите признак, характеризующий задачу квадратичного программирования. Ответы:

- +1. Ограничения описываются линейными функциями
- 2. Ограничения описываются квадратичными функциями
- 3. Ограничения описываются линейными и квадратичными функциями

Bonpoc 21. Укажите признаки, характеризующие задачу квадратичного программирования. Ответы:

- 1. Целевая функция всегда является выпуклой функцией
- +2. Целевая функция может быть выпуклой функцией
- 3. Целевая функция всегда не является выпуклой функцией
- +4. Множество допустимых решений всегда является выпуклым множеством
- 5. Множество допустимых решений всегда не является выпуклым множеством

Наименование секции: Линейное программирование

Bonpoc 1. Укажите форму задачи линейного программирования, в которой переменные могут принимать отрицательные значения. Ответы:

- 1. Каноническая задача линейного программирования
- 2. Стандартная задача линейного программирования
- +3. Общая задача линейного программирования

Вопрос 2. Укажите формы задачи линейного программирования, в которых все ограничения могут быть представлены в виде уравнений. Ответы:

- +1. Каноническая задача линейного программирования
- 2. Стандартная задача линейного программирования
- +3. Общая задача линейного программирования

Bonpoc 3. Укажите формы задачи линейного программирования, в которых все ограничения могут быть представлены в виде неравенств. Ответы:

- +1. Общая задача линейного программирования
- +2. Стандартная задача линейного программирования
- 3. Каноническая задача линейного программирования

Вопрос 4. Укажите признаки, характеризующие каноническую форму задачи линейного программирования. Ответы:

- 1. Ограничения в виде неравенств
- +2. Ограничения в виде уравнений
- 3. Переменные могут принимать любые значения
- +4. Переменные могут быть только неотрицательными
- 5. Определить минимум целевой функции
- +6. Определить максимум целевой функции

Bonpoc 5. Укажите признаки, характеризующие стандартную форму задачи линейного программирования. Ответы:

- +1. Ограничения в виде неравенств
- 2. Ограничения в виде уравнений
- 3. Переменные могут принимать любые значения
- +4. Переменные могут быть только неотрицательными
- 5. Определить минимум целевой функции
- +6. Определить максимум целевой функции

Вопрос 6. Укажите признаки, характеризующие стандартную форму задачи линейного программирования. Ответы:

- +1. Ограничения в виде неравенств
- +2. Ограничения в виде уравнений
- +3. Переменные могут принимать любые значения

- 4. Переменные могут быть только неотрицательными
- +5. Определить минимум целевой функции
- +6. Определить максимум целевой функции

Вопрос 7. Для какой формы задачи линейного программирования число переменных всегда должно быть больше числа ограничений? Ответы:

- 1. Общая задача линейного программирования
- 2. Стандартная задача линейного программирования
- +3. Каноническая задача линейного программирования

Bonpoc 8. Чем определяется размерность пространства, в котором находится выпуклый многогранник решений задачи линейного программирования? Ответы:

- 1. Числом ограничений
- 2. Числом переменных
- +3. Числом свободных переменных
- 4. Числом базисных переменных

Bonpoc 9. Чем определяется количество граней выпуклого многогранника решений в задаче линейного программирования? Ответы:

- +1. Числом ограничений
- 2. Числом переменных
- 3. Числом свободных переменных
- 4. Числом базисных переменных

Bonpoc 10. Каким переменным нужно задать нулевые значения, чтобы получить базисное решение задачи линейного программирования? Ответы:

- 1. Неотрицательные переменные
- 2. Переменные, которые могут принимать любые значения
- +3. Свободные переменные
- 4. Базисные переменные

Вопрос 11. Укажите вид преобразования задачи линейного программирования, в котором используются слабые переменные. Ответы:

- 1. Замена уравнений на неравенства в системе ограничений
- +2. Замена неравенств на уравнения в системе ограничений
- 3. Обеспечение неотрицательности всех переменных

Bonpoc 12. Где геометрически могут располагаться оптимальные решения задачи линейного программирования? Ответы:

- 1. Внутри выпуклого многогранника, описываемого системой ограничений
- +2. В одной вершине выпуклого многогранника, описываемого системой ограничений
- +3. В нескольких вершинах выпуклого многогранника, описываемого системой ограничений

Вопрос 13. Одна итерация симплекс-метода для решения задачи линейного программирования включает 4 шага. Укажите вариант, в котором они расположены в правильной последовательности. Ответы:

- 1. Оценка оптимальности базисного решения; выбор базисной переменной для перевода в свободные; выбор свободной переменной для перевода в базисные; смена базиса
- 2. Выбор свободной переменной для перевода в базисные; выбор базисной переменной для перевода в свободные; смена базиса; оценка оптимальности базисного решения
- +3. Оценка оптимальности базисного решения; выбор свободной переменной для перевода в базисные; выбор базисной переменной для перевода в свободные; смена базиса

Вопрос 14. Укажите признаки, по которым определяется получение оптимального решения задачи линейного программирования при использовании симплекс-метода для поиска максимального значения целевой функции. Ответы:

- 1. Неотрицательность свободных переменных
- +2. Неотрицательность базисных переменных
- +3. Неотрицательность коэффициентов при свободных переменных в выражении целевой функции
- 4. Неотрицательность коэффициентов при базисных переменных в выражении целевой функции
- 5. Неотрицательность значения целевой функции

Вопрос 15. Какая свободная переменная выбирается для перевода в базисные переменные на очередной итерации симплекс-метода. Ответы:

- 1. Для которой коэффициент в выражении целевой функции имеет максимальное по абсолютной величине значение
- 2. Для которой коэффициент в выражении целевой функции имеет максимальное значение
- +3. Для которой коэффициент в выражении целевой функции является отрицательным и имеет максимальное по абсолютной величине значение
- 4. Для которой коэффициент в выражении целевой функции является отрицательным и имеет минимальное по абсолютной величине значение

Bonpoc 16. Какая базисная переменная выбирается для перевода в свободные переменные на очередной итерации симплекс-метода. Ответы:

- 1. Значение которой возрастает при увеличении свободной переменной, переводимой в базисные
- +2. Значение которой убывает при увеличении свободной переменной, переводимой в базисные, и раньше других становится равной нулю
- 3. Значение которой убывает при увеличении свободной переменной, переводимой в базисные, и позже других становится равной нулю

Вопрос 17. Укажите признак, по которому в симплекс-методе определяется отсутствие оптимального решения в задаче линейного программирования из-за неограниченности роста целевой функции. Ответы:

- 1. При увеличении значения свободной переменной, переводимой в базисные, значения всех других базисных переменных убывают.
- +2. При увеличении значения свободной переменной, переводимой в базисные, значения всех других базисных переменных возрастают
- 3. При увеличении значения свободной переменной, переводимой в базисные, значения некоторых других базисных переменных убывают

Вопрос 18. Для каких целей применяется метод минимизации невязок? Ответы:

- 1. Определение базисного решения задачи линейного программирования
- +2. Определение допустимого базисного решения задачи линейного программирования
- 3. Определение оптимального решения задачи линейного программирования
- +4. Определение неразрешимости задачи линейного программирования из-за несовместности системы ограничений

Вопрос 19. В какой форме должна быть представлена задача линейного программирования, чтобы для поиска допустимого базисного решения можно было использовать метод минимизации невязок? Ответы:

1. Общая задача линейного программирования

- +2. Стандартная задача линейного программирования
- 3. Каноническая задача линейного программирования

Bonpoc 20. Укажите возможные значения целевой функции вспомогательной задачи в методе минимизации невязок. Ответы:

- 1. Больше нуля
- +2. Равно нулю
- +3. Меньше нуля

Bonpoc 21. Какое значение будет иметь целевая функция вспомогательной задачи в методе минимизации невязок после нахождения допустимого решения исходной задачи? Ответы:

- 1. Больше нуля
- 2. Меньше нуля
- +3. Равное нулю

Вопрос 22. В какой форме должна быть представлена задача линейного программирования, чтобы для поиска допустимого базисного решения можно было использовать метод искусственного базиса? Ответы:

- 1. Общая задача линейного программирования
- +2. Стандартная задача линейного программирования
- 3. Каноническая задача линейного программирования

Вопрос 23. Использование метода искусственного базиса позволяет установить отсутствие решений задачи линейного программирования из-за несовместности ограничений. Укажите признаки, по которым это можно сделать. Ответы:

- 1. После получения оптимального решения расширенной задачи все дополнительные переменные равны нулю
- +2. После получения оптимального решения расширенной задачи все дополнительные переменные больше нуля
- +3. После получения оптимального решения расширенной задачи некоторые дополнительные переменные равны нулю

Вопрос 24. Использование метода минимизации невязок позволяет установить отсутствие решений задачи линейного программирования из-за несовместности ограничений. Укажите признаки, по которым это можно сделать. Ответы:

- +1. После получения оптимального решения расширенной задачи все дополнительные переменные больше нуля
- 2. После получения оптимального решения вспомогательной задачи все дополнительные переменные равны нулю
- +3. После получения оптимального решения расширенной задачи некоторые дополнительные переменные больше нуля

Вопрос 25. Использование метода минимизации невязок позволяет установить отсутствие решений задачи линейного программирования из-за несовместности ограничений. Укажите признаки, по которым это можно сделать. Ответы:

- 1. Максимальное значение целевой функции вспомогательной задачи равно нулю
- 2. Максимальное значение целевой функции вспомогательной задачи больше нуля
- +3. Максимальное значение целевой функции вспомогательной задачи меньше нуля

Bonpoc 26. Чем определяется количество ограничений в двойственной задаче линейного программирования? Ответы:

1. Числом базисных переменных исходной задачи

- 2. Числом свободных переменных исходной задачи
- +3. Общим числом переменных исходной задачи

Bonpoc 27. Укажите верные свойства двойственной пары задач линейного программирования. Ответы:

- +1. Значение целевой функции для любого допустимого решения исходной задачи дает оценку снизу для оптимального значения целевой функции двойственной задачи.
- 2. Значение целевой функции для любого допустимого решения исходной задачи дает оценку сверху для оптимального значения целевой функции двойственной задачи.
- +3. Для оптимальных решений исходной и двойственной задач значения целевых функций равны
- 4. Для оптимальных решений исходной и двойственной задач значения целевых функций равны по абсолютной величине

Вопрос 28. Укажите неверные свойства двойственной пары задач линейного программирования. Ответ:

- 1. Значение целевой функции для любого допустимого решения исходной задачи дает оценку снизу для оптимального значения целевой функции двойственной задачи.
- +2. Значение целевой функции для любого допустимого решения исходной задачи дает оценку сверху для оптимального значения целевой функции двойственной задачи.
- +3. Значение целевой функции для любого допустимого решения двойственной задачи дает оценку снизу для оптимального значения целевой функции исходной задачи.
- 4. Для оптимальных решений исходной и двойственной задач значения целевых функций равны

Вопрос 29. Одна итерация двойственного симплекс-метода для решения задачи линейного программирования включает 4 шага. Укажите вариант, в котором они расположены в правильной последовательности. Ответы:

- 1. Выбор свободной переменной для перевода в базисные; выбор базисной переменной для перевода в свободные; смена базиса; оценка оптимальности решения
- +2. Выбор базисной переменной для перевода в свободные; выбор свободной переменной для перевода в базисные; смена базиса; оценка оптимальности решения
- 3. Выбор свободной переменной для перевода в базисные; выбор свободной переменной для перевода в базисные; оценка оптимальности решения; смена базиса

Наименование секции: Дискретное программирование

Вопрос 1. Укажите особенности, характерные для задач дискретного программирования. Ответы:

- 1. Целевая функция должна быть представлена выпуклой функцией
- +2. Значения управляемых переменных принадлежат счетному множеству
- 3. Значения управляемых переменных не могут быть отрицательными

Вопрос 2. Укажите особенности, характерные для задач дискретного программирования. Ответы:

- 1. Множество допустимых решений описывается линейными функциями
- +2. Множество допустимых решений не является выпуклым
- +3. Множество допустимых решений является конечным

Вопрос 3. Какие методы из перечисленных можно использовать для решения задач целочисленного линейного программирования? Ответы:

+1. Метод отсечения Гомори

- 1. Метод искусственного базиса
- +3. Метод динамического программирования

Bonpoc 4. Какие методы из перечисленных невозможно использовать для решения задач целочисленного линейного программирования? Ответы:

- 1. Метод ветвей и границ
- +2. Метод Хука-Дживса
- 3. Метод динамического программирования
- +4. Метод неопределенных множителей Лагранжа

Вопрос 5. Какие задачи можно решить методами отсечения Гомори? Ответы:

- 1. Задачи динамического программирования
- 2. Задачи оптимизации на сетях и графах
- +3. Задачи целочисленного линейного программирования

Вопрос 6. Какие задачи можно решить методом ветвей и границ? Ответы:

- 1. Задачи линейного программирования
- 2. Задачи нелинейного выпуклого программирования
- +3. Задачи целочисленного линейного программирования

Вопрос 7. Введите название дополнительного линейного ограничения, которое добавляется в формулировку задачи на очередной итерации метода Гомори. Ответ: правильное отсечение

Bonpoc 8. Какие данные используются для формулировки правильного отсечения в методе Гомори? Ответы:

- 1. Целые части коэффициентов при свободных переменных в уравнении, содержащем базисную переменную, значение которой не является целым
- +2. Дробные части коэффициентов при свободных переменных в уравнении, содержащем базисную переменную, значение которой не является целым
- 3. Целые части коэффициентов при свободных переменных в выражении целевой функции
- 4. Дробные части коэффициентов при свободных переменных в выражении целевой функции

Вопрос 9. При использовании метода Гомори требуется выделение целой и дробной частей вещественного числа. Введите целую часть отрицательного числа -6. 078. Ответ:-7

Вопрос 10. При использовании метода Гомори требуется выделение целой и дробной частей вещественного числа. Введите дробную часть отрицательного числа -6. 078. Ответ: 0.922

Bonpoc 11. По какой базисной переменной рекомендуется вводить правильное отсечение на очередной итерации метода Гомори? Ответы:

- 1. Переменная, которая имеет наименьшую дробную часть
- 2. Переменная, дробную часть которой равна нулю
- +3. Переменная, которая имеет наибольшую дробную часть

Вопрос 12. Сколько уравнений входит в ограничения задачи о назначения для случая 5 работ и 5 исполнителей. Введите целое число. Ответ: 10

Bonpoc 13. Сколько уравнений входит в ограничения задачи о назначения для случая 10 работ и 10 исполнителей. Введите целое число. Ответ: 20

Bonpoc 14. Какие значения могут принимать переменные, используемые при решении задачи о назначениях? Ответы:

- 1. Неотрицательные
- 2. Целочисленные
- +3. Только 0 и 1

Вопрос 15. Какой вид имеет целевая функция в задаче о назначения? Ответы:

- +1. Линейная функция
- 2. Квадратичная функция
- 3. Сумма линейной и квадратичной функций

Bonpoc 16. Для задачи о назначениях все коэффициенты при неизвестных в ограничениях равны. Введите это число. Ответ: 1

Bonpoc 17. Укажите действия, на которых основаны эквивалентные преобразования матрицы затрат в венгерском алгоритме решения задачи о назначениях. Ответы:

- 1. Умножение всех элементов строки на одно и то же число
- +2. Сложение всех элементов строки с одним и тем же числом
- 3. Умножение всех элементов столбца на одно и то же число
- +2. Вычитание из всех элементов столбца одного и того же числа

Bonpoc 18. Какое требование накладывается на элементы матрицы затрат при использовании венгерского алгоритма решения задачи о назначениях? Ответы:

- 1. Элементы матрицы затрат могут принимать только целые значения
- +2. Элементы матрицы затрат могут принимать только неотрицательные значения
- 3. Элементы матрицы затрат могут принимать только положительные значения
- 4. Элементы матрицы затрат могут принимать только целые неотрицательные значения

Вопрос 19. При использовании метода ветвей и границ на каждой итерации производится разбиение некоторого подмножества D_i решений на непересекающиеся подмножества D_{i1} , D_{i2} ,... D_{ik} . По какому критерию выбирается подмножество D_i при поиске решения по критерию минимума целевой функции? Ответы:

- 1. Наименьшее значение верхней границы целевой функции
- +2. Наименьшее значение нижней границы целевой функции
- 3. Наибольшее значение верхней границы целевой функции
- 4. Наибольшее значение нижней границы целевой функции

Вопрос 20. При использовании метода ветвей и границ на каждой итерации производится разбиение некоторого подмножества D_i решений на непересекающиеся подмножества D_{i1} , D_{i2} ,...

 D_{ik} . По какому критерию выбирается подмножество D_i при поиске решения по критерию максимума целевой функции? Ответы:

- 1. Наименьшее значение верхней границы целевой функции
- 2. Наименьшее значение нижней границы целевой функции
- +3. Наибольшее значение верхней границы целевой функции
- 4. Наибольшее значение нижней границы целевой функции

Bonpoc 21. Укажите правильное свойство из перечисленных для нижней границы целевой функции, применяемой в методе ветвей и границ. Ответы:

- 1. При разбиении множества допустимых решений на подмножества значение нижней границы целевой функции возрастает
- 2. При разбиении множества допустимых решений на подмножества значение нижней границы целевой функции убывает
- 3. При разбиении множества допустимых решений на подмножества значение нижней границы целевой функции не возрастает

+4. При разбиении множества допустимых решений на подмножества значение нижней границы целевой функции не убывает

Bonpoc 22. Укажите правильное свойство из перечисленных для верхней границы целевой функции, применяемой в методе ветвей и границ. Ответы:

- 1. При разбиении множества допустимых решений на подмножества значение верхней границы целевой функции возрастает
- 2. При разбиении множества допустимых решений на подмножества значение верхней границы целевой функции убывает
- +3. При разбиении множества допустимых решений на подмножества значение верхней границы целевой функции не возрастает
- 4. При разбиении множества допустимых решений на подмножества значение верхней границы целевой функции не убывает

Наименование секции: Нелинейное программирование

Bonpoc 1. Укажите достаточные условия существования минимума целевой функции в задаче нелинейного программирования без ограничений. Ответы:

- +1. Все частные производные равны нулю
- +2. Матрица Гессе вторых частных производных положительно определена
- 3. Матрица Гессе вторых частных производных отрицательно определена

Bonpoc 2. Укажите достаточные условия существования максимума целевой функции в задаче нелинейного программирования без ограничений. Ответы:

- +1. Все частные производные равны нулю
- 2. Матрица Гессе вторых частных производных положительно определена
- +3. Матрица Гессе вторых частных производных отрицательно определена

Bonpoc 3. По какому классификационному признаку алгоритмические методы поиска экстремума делятся на методы нулевого, первого и второго порядков? Ответы:

- 1. Количество управляемых переменных
- 2. Размерность пространства при поиске экстремума
- +3. Наивысший порядок производных целевой функции

Bonpoc 4. В каком из указанных одномерных методов поиска экстремума на каждой итерации целевая функция вычисляется для двух значения аргумента? Ответы:

- +1. Дихотомический метод
- 2. Метод Фибоначчи
- 3. Метод золотого сечения

Bonpoc 5. В каких одномерных методах поиска экстремума на каждой итерации целевая функция вычисляется только для одного значения аргумента? Ответы:

- 1. Дихотомический метод
- +2. Метод Фибоначчи
- +3. Метод золотого сечения

Вопрос 6. На каких условиях базируются методы регулярного поиска экстремума в задачах нелинейного программирования? Ответы:

- 1. Достаточные условия существования экстремума
- +2. Необходимые условия существования экстремума

Bonpoc 7. В каких из указанных методов регулярного поиска экстремума не используются производные целевой функции? Ответы:

- 1. Градиентный метод с постоянным шагом
- 2. Метод наискорейшего спуска (подъема)
- +3. Метод покоординатного спуска (подъема)

Bonpoc 8. Укажите методы нулевого порядка, применяемые для поиска экстремума в задачах нелинейного программирования. Ответы:

- 1. Градиентный метод с постоянным шагом
- 2. Метод наискорейшего спуска (подъема)
- +3. Метод покоординатного спуска (подъема)
- +4. Метод конфигураций Хука-Дживса

Вопрос 9. Укажите методы первого порядка, применяемые для поиска экстремума в задачах нелинейного программирования. Ответы:

- 1. Метод покоординатного спуска (подъема)
- +2. Градиентный метод с постоянным шагом
- +3. Метод наискорейшего спуска (подъема)
- 4. Симплексный метод Нелдера-Мида

Bonpoc 10. Какие из перечисленных методов позволяют решать задачи поиска условного экстремума в задачах нелинейного программирования? Ответы:

- 1. Метод наискорейшего спуска (подъема)
- +2. Метод неопределенных множителей Лагранжа
- 3. Метод конфигураций Хука-Дживса
- 4. Симплексный метод Нелдера-Мида
- +5. Метод штрафных функций

Вопрос 11. Какие из перечисленных методов позволяют решать задачи нелинейного программирования, в формулировке которых присутствуют ограничения в виде неравенств? Ответы:

- 1. Метод конфигураций Хука-Дживса
- 2. Симплексный метод Нелдера-Мида
- +3. Метод штрафных функций
- 4. Метод неопределенных множителей Лагранжа
- 5. Метод наискорейшего спуска (подъема)
- +6. Метод регулярного поиска экстремума на основе теоремы Куна-Таккера

Bonpoc 12. Укажите класс задач, которые можно решать методом неопределенных множителей Лагранжа. Ответы:

- 1. Задачи целочисленного линейного программирования
- 2. Задачи нелинейного программирования без ограничений
- +3. Задачи нелинейного программирования с ограничениями в виде уравнений
- 4. Задачи нелинейного программирования с ограничениями в виде неравенств

Вопрос 13. Что устанавливает теорема Куна-Таккера? Ответы:

- 1. Необходимые условия существования условного экстремума в задачах нелинейного программирования
- +2. Необходимые условия существования условного экстремума в задачах выпуклого нелинейного программирования
- 3. Необходимые условия существования безусловного экстремума в задачах нелинейного программирования

4. Необходимые условия существования безусловного экстремума в задачах выпуклого нелинейного программирования

Вопрос 14. Что устанавливает теорема Куна-Таккера? Ответы:

- +1. Необходимые условия существования условного экстремума в задачах выпуклого нелинейного программирования
- 2. Достаточные условия существования условного экстремума в задачах выпуклого нелинейного программирования
- 3. Необходимые условия существования безусловного экстремума в задачах нелинейного программирования
- 4. Достаточные условия существования безусловного экстремума в задачах нелинейного программирования

Bonpoc 15. Укажите класс задач, которые можно решать методами регулярного поиска экстремума на основе теоремы Куна-Таккера. Ответы:

- 1. Задачи линейного программирования
- 2. Задачи целочисленного линейного программирования
- 3. Задачи нелинейного программирования без ограничений
- 4. Задачи нелинейного программирования с ограничениями в виде уравнений
- +5. Задачи нелинейного программирования с ограничениями в виде неравенств

Bonpoc 16. Какие из перечисленных методов нелинейного программирования основаны на замене задачи поиска условного экстремума эквивалентной задачей поиска безусловного экстремума? Ответы:

- 1. Метод конфигураций Хука-Дживса
- +2. Метод штрафных функций
- 3. Симплексный метод Нелдера-Мида
- +4. Метод неопределенных множителей Лагранжа
- 5. Метод покоординатного спуска (подъема)

Типовые практические задания

Задание 1. Преобразовать общую задачу линейного программирования в стандартную и каноническую формы:

$$\max F(x_1, x_2, x_3) = 2x_1 - x_2 - 5x_3;$$

$$\begin{cases} 4x_1 + 3x_2 + x_3 = 4; \\ -x_1 + 6x_2 - x_3 \ge 2; \\ 7x_1 - x_2 + 2x_3 \le 5. \end{cases}$$

Задание 2. Решить графическим методом задачу линейного программирования:

$$\min F(x_1, x_2) = x_1 + 2x_2;$$

$$\begin{cases} 3x_1 - 2x_2 \le 6; \\ -x_1 + 2x_2 \le 4; \\ 3x_1 + 2x_2 \le 12; \\ x_1 \ge 0. \end{cases}$$

Задание 3. Решить графическим методом задачу линейного программирования:

min
$$F(x_1, x_2) = 7x_1 + 5x_2$$
;

$$\begin{cases} x_1 + x_2 \ge 3; \\ x_1 + 5x_2 \ge 5; \\ 2x_1 + x_2 \ge 4. \end{cases}$$

Задание 4. Решить задачу линейного программирования:

$$\max F(x_1, x_2) = 3x_1 + 2x_2;$$

$$\begin{cases} x_1 + 3x_2 \le 270; \\ 4x_1 + 6x_2 \le 600; \\ 3x_1 + x_2 \le 240; \\ x_1, x_2 \ge 0. \end{cases}$$

Задание 5 . Сформулировать задачу линейного программирования, двойственную к следующей задаче:

$$\Phi(\overline{y}) = y_1 + 2y_2;$$

$$\begin{cases} 2y_1 + y_2 \ge 3; \\ 2y_1 - 7y_2 \le 1; \\ 2y_1 + 3y_2 \ge 6; \\ y_1, y_2 \ge 0. \end{cases}$$

Решить одну из полученных задач симплекс-методом и записать решение для второй задачи двойственной пары.

Задание 6. Определить минимум целевой функции $F(\bar{x}) = x_1 + 2x_2$ при ограничениях

$$\begin{cases} 2x_1 + x_2 \ge 3; \\ 2x_1 - 7x_2 \le 1; \\ 2x_1 + 3x_2 \ge 6. \end{cases}$$

Использовать двойственный симплекс-метод.

Задание 7. Решить методом Гомори задачу целочисленного линейного программирования

$$\max F(\bar{x}) = x_1 - 3x_2 + 3x_3$$

$$\begin{cases} 4x_1 - 3x_2 + x_4 = 2; \\ -3x_1 + 2x_2 + x_3 + x_5 = 3; \\ 2x_1 + x_2 - x_3 + x_6 = 4; \\ x_j \ge 0 \text{ (целые)}, \ j = 1,2,...6. \end{cases}$$

Оптимальное решение этой задачи без требования целочисленности приведено в таблице.

	рункция и еременные	Коэффициенты при переменных					
имена	значения	x_1	x_2	<i>X</i> 3	<i>X</i> 4	<i>X</i> ₅	χ_6
F	14	0	6/4	0	10/4	3	0
<i>X</i> 1	2/4	1	-3/4	0	1/4	0	0
<i>X</i> 3	18/4	0	-1/4	1	3/4	1	0
<i>X</i> 6	30/4	0	9/4	0	1/4	1	1

Далее ввести правильное отсечение по переменной x_1 .

Задание 8. Определить методом неопределенных множителей Лагранжа стационарную точку функции $F(x_1,x_2)=4x_1+x_1^2+8x_2+x_2^2$ при условиях

$$\begin{cases} x_1 + x_2 = 180; \\ x_1, x_2 \ge 0. \end{cases}$$

Задание 9. Определить решение задачи о назначениях венгерским методом по критерию максимума целевой функции для следующей матрицы затрат:

$$C = \begin{pmatrix} 3 & 8 & 4 & 9 \\ 4 & 5 & 2 & 5 \\ 2 & 7 & 5 & 11 \\ 7 & 6 & 5 & 7 \end{pmatrix}$$

Задание 10. Цех выпускает три вида изделий, которые изготавливаются на трех станках. Технологическая схема изготовления деталей с указанием времени обработки приведена на рисунке.

Суточный ресурс времени для станков 1, 2 и 3: 890 мин., 920 мин. и 840 мин. соответственно. Стоимость изделий составляет 1, 2 и 3 условных единиц. Составить задачу планирования суточного производства по критерию максимальной стоимости выпускаемой продукции.

Задание 11. Определить решение задачи о назначениях венгерским методом по критерию минимума целевой функции для следующей матрицы затрат:

$$C = \begin{pmatrix} 3 & 8 & 4 & 9 \\ 4 & 5 & 2 & 5 \\ 2 & 7 & 5 & 11 \\ 7 & 6 & 5 & 7 \end{pmatrix}$$

Задание 12. Решить методом искусственного базиса задачу линейного программирования

$$\max F(\bar{x}) = 7x_1 + 12x_2$$

$$\begin{cases} 5x_1 + 8x_2 \le 15; \\ x_1 \ge 2; \\ x_2 \le 1 \end{cases}$$

при условии $x_1, x_2 \ge 0$.

Задание 13. Решить задачу линейного программирования

$$\max F(\bar{x}) = 7x_1 + 12x_2$$

$$\begin{cases} 5x_1 + 8x_2 \le 15; \\ x_1 \ge 2; \\ x_2 \le 1 \end{cases}$$

при условии $x_1, x_2 \ge 0$. Для получения исходного допустимого базисного решения использовать метод минимизации невязок.

Задание 14. Определить решение задачи линейного программирования

$$\max F(\bar{x}) = 7x_1 + 12x_2$$

$$\begin{cases} 5x_1 + 8x_2 \le 15; \\ x_2 \ge 2; \\ x_1, x_2 \ge 0. \end{cases}$$

Задание 15. Решить графическим методом задачу целочисленного линейного программирования при условии неотрицательности переменных x_1 и x_2 :

$$\max F(\bar{x}) = 2x_1 + 4x_2;$$

$$\begin{cases} 2x_1 + x_2 \le 19/3; \\ x_1 + 3x_2 \le 10. \end{cases}$$

Задание 16. Получить графическое решение задачи целочисленного линейного программирования:

$$\min \ F(\overline{x}) = x_1 - x_2;$$

$$\begin{cases} 2x_1 + x_2 \le 6; \\ -2.5x_1 + x_2 \le 0; \\ x_1, x_2 \ge 0 \text{ (целые)}. \end{cases}$$

Задание 17. Получить решение задачи линейного программирования:

$$\max F(\bar{x}) = 2x_1 - 6x_2 + 5x_3;$$

$$\begin{cases}
-2x_1 + x_2 + x_3 \le 20; \\
-x_1 - 2x_2 + 3x_3 \le 24; \\
3x_1 - x_2 + 12x_3 \le 18; \\
x_1, x_2, x_3 \ge 0.
\end{cases}$$

Задание 18. Методом динамического программирования определить максимум целевой функции $F(\overline{u})=2u_1+3u_2+6u_3$ при ограничениях $3u_1+2u_2+4u_3\leq 5;\ u_1,u_2,u_3\geq 0$ (целые) .

Задание 19. Определить минимум целевой функции $F(\bar{x}) = x_1^2 + 16x_2^2 + 4x_1 + 4$ методом покоординатного спуска для начальной точки поиска $\bar{x}^{(0)} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Задание 20. Определить графическим методом минимум и максимум целевой функции $F(\bar{x}) = 2x_1 + 4x_2$, где переменные $x_1, x_2 \ge 0$ могут принимать только целые значения, при ограничениях

$$\begin{cases} 3x_1 + 2x_2 \ge 11; \\ -2x_1 + x_2 \le 2; \\ x_1 - 3x_2 \le 0. \end{cases}$$

Задание 21. Решить задачу линейного программирования при условии неотрицательности всех переменных:

$$\max F(x_1, x_2, x_3) = 3x_1 + 2x_5 - 5x_6;$$

$$\begin{cases} 2x_1 + x_2 - 3x_5 + 5x_6 = 34; \\ 4x_1 + x_3 + 2x_5 - 4x_6 = 28; \\ -3x_1 + x_4 - 3x_5 + 6x_6 = 24. \end{cases}$$

Задание 22. Сформулировать задачу линейного программирования, двойственную к следующей задаче:

$$F(\bar{x}) = 3x_1 + 4x_2 + 5x_3 + 6x_4$$
;

$$\begin{cases} 2x_1 + x_2 - x_3 + 5x_4 \ge 5; \\ 3x_1 - 2x_2 + x_3 + 4x_4 \ge 4; \\ x_1, x_2, x_3, x_4 \ge 0. \end{cases}$$

Решить одну из полученных задач симплекс-методом и записать решение для второй задачи двойственной пары.

Задание 23. Определить первую точку поиска минимума целевой функции $F(\bar{x})=3x_1-2x_1x_2+4x_2$ методом наискорейшего спуска из начальной точки $\bar{x}^{(0)}=\begin{pmatrix}1\\2\end{pmatrix}$.

Задание 24. Определить минимум целевой функции $F(\bar{x}) = x_1^2 + x_2^2 + 1,2x_1x_2$ методом сопряженных направлений из начальной точки $\bar{x}^{(0)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Задание 25. Решить задачу линейного программирования методом искусственного базиса при условии неотрицательности всех переменных:

$$\max F(x_1, x_2, x_3) = 3x_1 + 5x_2 + 4x_3;$$

$$\begin{cases} 3x_1 + 4x_2 + 2x_3 \le 9; \\ 2x_1 + 5x_2 + x_3 \le 8; \\ x_1 + 2x_2 + 4x_3 \ge 7. \end{cases}$$

Типовые теоретические вопросы

- 1. Системный подход и задачи оптимизации
- 2. Общая постановка задачи оптимизации
- 3. Задача определения оптимальных параметров технологического процесса
- 4. Задача определения оптимальных допусков на параметры объекта
- 5. Задача оптимального планирования промышленных технологий
- 6. Задача оптимального раскроя листового материала
- 7. Классификация задач оптимизации
- 8. Общая характеристика многокритериальных задач оптимизации. Оптимальность по Парето
- 9. Выбор критериев оптимизации. Методы обобщенного и главного критериев
- 10. Выбор критериев оптимизации. Методы последовательных уступок и минимаксного критерия
- 11. Вычисление весовых коэффициентов, учитывающих важность частных критериев оптимальности
- 12. Основные виды задач математического программирования
- 13. Задача квадратичного программирования
- 14. Математическая постановка задачи линейного программирования
- 15. Преобразование форм задачи линейного программирования
- 16. Базисное решение задачи линейного программирования
- 17. Геометрическая интерпретация задачи линейного программирования
- 18. Симплекс-метод решения задачи линейного программирования
- 19. Табличная форма симплекс-метода решения задачи линейного программирования
- 20. Метод минимизации невязок
- 21. Метод искусственного базиса
- 22. Двойственная задача линейного программирования. Основные свойства
- 23. Табличная форма двойственной пары задач линейного программирования
- 24. Двойственный симплекс-метод
- 25. Общая характеристика задач дискретного программирования

- 26. Метод отсечения Гомори
- 27. Общая схема метода ветвей и границ
- 28. Применение метода ветвей и границ для решения задачи целочисленного линейного программирования
- 29. Математическая постановка задачи о назначениях и характеристика методов ее решения
- 30. Венгерский метод решения задачи о назначениях
- 31. Общая характеристика метода динамического программирования
- 32. Реализация метода динамического программирования
- 33. Решение задачи о рюкзаке методом динамического программирования
- 34. Общая характеристика методов решения задач нелинейного программирования
- 35. Методы регулярного поиска экстремума без учета ограничений
- 36. Метод Хука-Дживса
- 37. Метод Нелдера-Мида
- 38. Метод неопределенных множителей Лагранжа
- 39. Теорема Куна-Таккера
- 40. Метод штрафных функций
- 41. Методы случайного поиска экстремума
- 42. Методы поиска глобального экстремума
- 43. Понятие эволюционных методов оптимизации
- 44. Простой генетический алгоритм
- 45. Основные операторы генетического алгоритма
- 46. Варианты реализации генетических операторов
- 47. Решение задачи поиска безусловного экстремума целевой функции простым генетическим алгоритмом
- 48. Решение задачи о ранце простым генетическим алгоритмом
- 49. Решение задачи коммивояжера просты генетическим алгоритмом
- 50. Модификации генетических алгоритмов
- 51. Адаптивные генетические алгоритмы
- 52. Параллельные генетические алгоритмы

Типовые вопросы к лабораторным и практическим занятиям

- 1. Какова необходимость решения задачи одномерного поиска в общей задаче оптимизации?
- 2. В чем заключается сущность метода дихотомического деления при численном решении задачи поиска экстремума функции?
- 3. В чем заключается сущность метода Фибоначчи при численном решении задачи поиска экстремума функции?
- 4. Каковы основные отличия методов Фибоначчи и «золотого сечения», применяемых при численном решении задачи поиска экстремума функции?
- 5. Каковы сравнительные характеристики алгоритмов численного поиска экстремума функции, основанных на методах дихотомического деления, Фибоначчи и «золотого сечения»?
- 6. Как для алгоритма Фибоначчи определить количество итераций, позволяющее уменьшить интервал неопределенности в 1000 раз?
- 7. Как формулируется задача линейного программирования в общей, стандартной и канонической формах?
- 8. В какой форме должна быть представлена задача для ее решения средствами программы Excel?
- 9. Каким образом выполняется запись задачи линейного программирования на рабочий лист электронной таблицы?

- 10. Какое назначение имеют основные управляющие элементов диалогового окна «Поиск решения» программы Excel?
- 11. Как выполняется ввод ограничений исходной задачи линейного программирования в электронную таблицу программы Excel?
- 12. Какие виды ограничений учитывает надстройка «Поиск решения» программы Excel?
- 13. Из каких частей состоит отчета, который формируется программой Excel по результатам решения задачи линейного программирования?
- 14. Что показывает отчет по устойчивости, который формируется программой Excel при решении задачи линейного программирования?
- 15. Какие данные содержит отчет по пределам, который формируется программой Excel при решении задачи линейного программирования?
- 16. Как выполняется поиск решения задачи линейного программирования графическим методом?
- 17. В чем заключается основная идея симплекс-метода решения задачи линейного программирования? Какие шаги включает симплекс-метод?
- 18. Что такое базис и как выполняется смена базиса в симплекс-методе?
- 19. Как формулируются правила выбора переменных, переводимых из свободных в базисные и наоборот из базисных в свободные, на некоторой итерации симплекс-метода?
- 20. Какова необходимость использования специальных методов получения исходного допустимого базисного решения для задачи линейного программирования при использовании симплекс-метода?
- 21. Как выполняется поиск исходного допустимого базисного решения методом минимизации невязок?
- 22. Как выполняется поиск исходного допустимого базисного решения методом искусственного базиса?
- 23. Как формулируется задача многокритериальной оптимизации?
- 24. В чем заключается принципиальное отличие задач многокритериальной и однокритериальной оптимизации?
- 25. Как определяется область критериев для задачи многокритериальной оптимизации?
- 26. В чем заключается отличие области допустимых решений и области критериев для задачи многокритериальной оптимизации?
- 27. Как определяется понятие решения, оптимального по Парето?
- 28. В чем состоит отличие области Парето от области компромиссов?
- 29. Каковы основные характеристики известных методов решения задач многокритериальной оптимизации?
- 30. Как формулируется задача многокритериальной линейной оптимизации?
- 31. Могут ли частные критерии иметь различные направления оптимизации?
- 32. Какова основная идея метода равных и наименьших относительных отклонений?
- 33. Как определить величину относительных отклонений частных критериев от оптимальных значений для компромиссного решения?
- 34. Как формулируется расширенная задача линейного программирования для получения компромиссного решения в методе равных и наименьших относительных отклонений?
- 35. Какова основная идея метода минимаксного критерия?
- 36. Как формулируется целевая функция при использовании минимаксного критерия?
- 37. Как формулируется расширенная задача линейного программирования для получения компромиссного решения в методе минимаксного критерия?
- 38. Каким образом достигается неотрицательность всех используемых переменных при решении расширенной задачи линейного программирования в процессе поиска компромиссного решения?
- 39. В чем состоит необходимость использования весовых коэффициентов, учитывающих важность частных критериев оптимальности в методе равных и наименьших относительных отклонений?

- 40. Можно ли задать важность частных критериев оптимальности в методе минимаксного критерия? Если можно, то как?
- 41. Как вычисляются коэффициенты регрессии, задающие состояние исследуемого объекта?
- 42. Каким образом составляется формальная модель процесса сборки изделия в виде системы массового обслуживания?
- 43. Какие принципы лежат в основе статистического моделирования систем массового обслуживания?
- 44. Как выполняется статистическая обработка результатов вычислительного эксперимента?
- 45. Какие экспериментальные данные требуются для проверки гипотез о нормальном распределении параметров исследуемого объекта?
- 46. Какие параметры технологических процессов пайки и сварки учитываются при разработке математических моделей, описывающих качество неразъемных соединений?
- 47. В чем заключается методика построения динамической модели качества неразъемных соединений?
- 48. Как строится марковская модель процесса выполнения программы для определения числа межуровневых обменов данными?
- 49. Какие принципы лежат в основе имитационного эксперимента по определению числа межуровневых обменов данными?
- 50. Какие критерии применяются для принятия решений в условиях полной неопределенности?
- 51. На каких положениях основано использование максиминного критерия Вальда?
- 52. В чем состоит основная идея критерия минимального риска Сэвиджа?
- 53. На каких положениях основано использование критерия пессимизма-оптимизма Гурвица?
- 54. Как формулируется задача принятия решений в условиях риска?
- 55. Какие методы принятия решений в условиях риска известны?
- 56. При каких условиях рекомендуется использовать критерий Байеса-Лапласа?
- 57. Как выбирается оптимальная стратегия по критерию недостаточного основания Бернулли?

Типовые задания для практической и самостоятельной работы

Практические задания

- 1. Программная реализация и исследование поисковых алгоритмов решения задач нелинейного программирования.
- 2. Программная реализация и исследование алгоритмов решения задачи о назначениях.
- 3. Программная реализация метода отсечения Гомори для решения задач целочисленного линейного программирования.
- 4. Программная реализация и исследование метода статистических испытаний для решения задачи коммивояжера.
- 5. Разработка программ для определения экстремальных чисел графов.
- 6. Разработка программы решения задачи целочисленного линейного программирования методом ветвей и границ.
- 7. Разработка программы решения задачи о рюкзаке методом динамического программирования.
- 8. Изучение возможностей современных пакетов прикладных программ для решения задач оптимизации. Подготовка практических примеров.
- 9. Разработка программы решения задачи коммивояжера методом ветвей и границ.

- 10. Разработка демонстрационной программы для графического решения задач линейного программирования.
- 11. По исходным данным выбрать оптимальную стратегию по критериям Байеса-Лапласа.
- 12. Выбрать оптимальную стратегию по критерию Вальда.
- 13. Выбрать оптимальную стратегию по критерию Сэвиджа.
- 14. Выбрать оптимальную стратегию по критерию Гурвица.
- 15. Найти методом Беллмана дерево решений.
- 16. Найти фундаментальную матрицу.

Теоретические задания (темы рефератов)

- 1. Оценки вычислительной сложности алгоритмов решения задач дискретной оптимиза-
- 2. Экстремальные числа графов и их применение в алгоритмах решения прикладных задач оптимизации.
- 3. Оптимизационные задачи теории расписаний.
- 4. Методы решения многокритериальных задач оптимизации.
- 5. NP-полные задачи оптимизации.
- 6. Решение задачи коммивояжера методом статистических испытаний.
- 7. Алгоритмы оптимизации на графовых моделях. Кратчайшие пути.
- 8. Алгоритмы оптимизации на графовых моделях. Потоки в сетях.
- 9. Алгоритмы оптимизации на графовых моделях. Транспортная задача.
- 10. Алгоритмы оптимизации на графовых моделях. Построение паросочетаний.
- 11. Алгоритмы оптимизации на графовых моделях. Построение кратчайших связывающих деревьев.
- 12. Функции выбора.
- 13. Свойство наследования.
- 14. Свойство отбрасывания.
- 15. Свойство согласованности.
- 16. Язык бинарных отношений.
- 17. Критериальный язык описания выбора.
- 18. Основные этапы системного анализа.

ПОДПИСАНО

ЗАВЕДУЮЩИМ

ВЫПУСКАЮЩЕЙ КАФЕДРЫ

Составил проф. кафедры САПР ВС, д.т.н., проф.

С.В. Скворцов

07.10.25 14:09 Простая подпись (MSK) Простая подпись **07.10.25** 14:10

Оператор ЭДО ООО "Компания "Тензор"