МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования Рязанский государственный радиотехнический университет имени В.Ф. Уткина

Кафедра «Промышленной электроники»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Цифровая и микропроцессорная техника»

Направление подготовки
13.03.02 "Электроэнергетика и электротехника"

ОПОП академического бакалавриата «Электроснабжение»

Квалификация выпускника – бакалавр Форма обучения – очная

Рязань 2022 г.

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено».

Промежуточный контроль по дисциплине осуществляется проведением экзамена. Форма проведения экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса.

Паспорт фонда оценочных средств по дисциплине

	Код контролируемой компетенции (или её части)	Наименование оценочного средства
Раздел 1. Функциональные узлы цифровых		
устройств.		
Тема 1.1. Кодирование информации в цифровых и микропроцессорных системах.	ПК-2	Экзамен
Гема 1.2. Базовые логические элементы.	ПК-2	Экзамен
Тема 1.3. Типовые комбинационные функциональные узлы.	ПК-2	Экзамен
Тема 1.4. Арифметические устройства	ПК-2	Экзамен

Тема 1.5. Триггеры.	ПК-2	Экзамен	
Тема 1.6. Счетчики импульсов	ПК-2	Экзамен	
Тема 1.7. Регистры.	ПК-2	Экзамен	
Тема 1.8. Запоминающие устройства.	ПК-2	Экзамен	
Раздел 2. Структура микропроцессорной системы.			
Тема 2.1. Функциональная схема микроЭВМ.	ПК-2	Экзамен	
Тема2. 2. Процессорный блок микроЭВМ.	ПК-2	Экзамен	
Тема 2.3. Программная модель микропроцессора.	ПК-2	Экзамен	
Раздел 3.Система команд микропроцессоров Intel 80x86.			
Тема 3.1. Команды пересылки данных.	ПК-2	Экзамен	
Тема 3.2. Арифметические команды.	ПК-2	Экзамен	
Тема 3.3. Написание, трансляция, компоновка и исполнение программ на языке ассемблера.	ПК-2	Экзамен	
Раздел 4. Интерфейсы в электроэнергетике			
Тема 4.1. Организация физического уровня промышленных интерфейсов: RS-232, RS-485. Протокол Modbus.			

Перечень лабораторных работ

$N_{\underline{0}}$	№ раздела	Наименование лабораторных работ
п/п	дисциплины	
1.	Раздел 1. Тема 1.5.	Триггеры.
2.	Раздел 1. Тема 1.6.	Счетчики импульсов.
3.	Раздел 1. Тема 1.7.	Регистры.
4.	Раздел 1. Тема 1.8.	Полупроводниковые запоминающие устройства.

Планы практических занятий

1. Асинхронные триггеры в интегральном исполнении. Применение триггеров: схема устранения влияния дребезга контактов.

- 2. Синхронные триггеры в интегральном исполнении. Применение синхронных триггеров.
- 3. Асинхронные счетчики импульсов в интегральном исполнении и их применение.
- 4. Синхронные счетчики импульсов в интегральном исполнении и их применение.
- 5. Построение счетчиков импульсов с заданным модулем счета.
- 6. Применение регистров в цифровой и микропроцессорной технике.
- 7. Отечественные микросхемы оперативной и флеш памяти.
- 8. Обработка двоично-десятичной информации.

Вопросы к экзамену по дисциплине

- 1. Базовые логические элементы.
- 2. Условное обозначение интегральных микросхем
- 3. Классификация триггеров.
- 4. Асинхронный RS- триггер.
- 5. D-триггер, синхронизируемый по уровню.
- 6. D-триггер, синхронизируемый по фронту.
- 7. Т- и ЈК- триггер.
- 8. Классификация счетчиков импульсов.
- 9. Асинхронный счетчик импульсов.
- 10. Синхронный счетчик импульсов.
- 11. Счетчики импульсов, выполненные в виде интегральных микросхем средней степени интеграции.
- 12. Построение счетчиков импульсов с заданным модулем счета.
- 13. Классификация регистров.
- 14. Регистры памяти.
- 15. Регистры сдвига влево и вправо.
- 16. Применение регистров сдвига для быстрого умножения и деления двоичных чисел.
- 17. Универсальные регистры.
- 18. Классификация запоминающих устройств.
- 19. Статические ОЗУ с раздельными и объединенными выводами входа и выхода данных.
- 20. Постоянные запоминающие устройства.
- 21. Динамические ОЗУ.
- 22. Функциональная схема микроЭВМ.
- 23. Процессорный блок.
- 24. Состав и назначение блока памяти.
- 25. Организация подключение устройств ввода и вывода к системной шине.
- 26. Организация обслуживания обмена по прерываниям. Программируемый контроллер прерываний.
- 27. Организация режима прямого доступа к памяти. Программируемый контроллер прямого доступа к памяти.

- 28. Программная модель микропроцессора 8086.
- 29. Регистр флажков микропроцессора 8086.
- 30. Команды пересылки данных общего назначения.
- 31. Организация стека. Команды работы со стеком.
- 32. Команды сложения двоичных чисел.
- 33. Команды сложения двоично-десятичных чисел в упакованном и неупакованном форматах.
- 34. Команды вычитания двоичных чисел.
- 35. Вычитание двоично-десятичных чисел в упакованном и неупакованном формате.
- 36. Команды умножения знаковых и беззнаковых двоичных чисел.
- 37. Умножение двоично-десятичных чисел в неупакованном формате.
- 38. Команды деления знаковых и беззнаковых двоичных чисел.
- 39. Деление двоично-десятичных чисел в неупакованном формате. Команды расширения знака.
- 40. Формат программ на языке ассемблера. Директивы языка ассемблера
- 41. Формат программ *.сом.
- 42. Организация физического уровня промышленных интерфейсов: RS-232, RS-485, CAN, SPI и IIC.
- 43. Протокол Modbus.

Типовые задания для самостоятельной работы

Чтение и анализ научной литературы по темам и проблемам курса.

Конспектирование, аннотирование научных публикаций.

Рецензирование учебных пособий, монографий, научных статей, авторефератов.

Анализ нормативных документов и научных отчётов.

Реферирование научных источников.

Сравнительный анализ научных публикаций, авторефератов и др.

Проектирование методов исследования и исследовательских методик и др.

Подготовка выступлений для коллективной дискуссии.

6. Критерии оценивания компетенций (результатов)

- 1. Уровень усвоения материала, предусмотренного программой.
- 2. Умение анализировать материал, устанавливать причинно-следственные связи.
- 3. Ответы на вопросы: полнота, аргументированность, убежденность, умение.
- 4. Качество ответа: его общая композиция, логичность, убежденность, общая эрудиция.
- 5. Использование дополнительной литературы при подготовке ответов.

Ответ оценивается по 4 балльной системе.

Отметка «5» ставится, если:

- знания отличаются глубиной и содержательностью, дается полный исчерпывающий ответ, как на основные вопросы билета, так и на дополнительные;
- обучающийся свободно владеет теоретическими и практическими навыками;
- логично и доказательно раскрывает вопрос, предложенный в билете;
- ответ характеризуется глубиной, полнотой и не содержит фактических ошибок;
- ответ иллюстрируется расчетными примерами;
- обучающийся демонстрирует умение аргументировано вести диалог и научную дискуссию.

Отметка «4» ставится, если:

- знания имеют достаточный содержательный уровень, однако отличаются слабой структурированностью; содержание билета раскрывается, но имеются неточности при ответе на дополнительные вопросы
- имеющиеся в ответе несущественные фактические ошибки, обучающийся способен исправить самостоятельно, благодаря наводящему вопросу;
- недостаточно раскрыта проблема по одному из вопросов билета;
- недостаточно логично изложен вопрос;
- ответ прозвучал недостаточно уверенно;
- обучающийся не смог продемонстрировать способность к интеграции теоретических знаний к практике.

Отметка «3» ставится, если:

- содержание билета раскрыто слабо, знания имеют фрагментарный характер, отличаются поверхностностью и малой содержательностью, имеются неточности при ответе на основные вопросы билета;
- программные материал в основном излагается, но допущены фактические ошибки;
- обучающийся не может привести пример для иллюстрации теоретического положения;
- у обучающегося отсутствует понимание излагаемого материала, материал слабо структурирован;

Отметка «неудовлетворительно» ставится, если:

- обнаружено незнание или непонимание обучающимся теории логикомыслительных методов математики;
- содержание вопросов билета не раскрыто, допускаются существенные фактические ошибки, которые обучающийся не может исправить самостоятельно;
- на большую часть дополнительных вопросов по содержанию экзамена обучающийся затрудняется дать ответ или не дает верных ответов.

Составил:

к.т.н., доцент каф. ПЭл

А.А. Свиязов

Зав. кафедрой ПЭл к.т.н., доцент

С.А. Круглов