МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

А.П. Капранов, Г.А. Борисов, Р.А. Чесноков

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

Методические указания к практическим занятиям (кинематика)

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Факультет вычислительной техники

Кафедра космических технологий

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

Методические указания к практическим занятиям (кинематика)

Направление подготовки:

02.03.01 «Математика и компьютерные науки»

24.05.06 «Системы управления летательными аппаратами»

Форма обучения: очная

А.П. Капранов, Г.А. Борисов,Р.А. Чесноков «Теоретическая механика»: Методические указания к практическим занятиям (кинематика) разработаны в соответствии с ФГОС ВО по направлению подготовки 02.03.01 «Математика и компьютерные науки», 24.05.06 «Системы управления летательными аппаратами» Положения об ООП, реализуемой по ФГОС ВО — Рязань РГРТУ, 2021. — 13 с.

Ил. 13. Библиогр 4 назв.

Предназначено для студентов высших учебных заведений, обучающихся по направлению: 02.03.01 «Математика и компьютерные науки», 24.05.06 «Системы управления летательными аппаратами»

	Метод	диче	ские указ	зания к	пра	ктическим	и занятиям
(ĸ	инематика)	по д	исциплине «	«Теоретиче	еская м	механика»	рассмотрень
И	одобрены	на	заседании	кафедры	«Косл	лические	технологии»
протокол №			от	2022 г.			

Содержание

ЛИТЕРАТУРА

ЗАДАІ	ния движения точки. Скорость и ускорение то	чки.
		5
2.	Поступательное и вращательное движение т	ВЕРДОГО ТЕЛА
		9
3.	Плоское движение твердого тела и движение	ЕПЛОСКОЙ
ФИГУ	ры в ее плоскости. Скорость И УСКОРЕНИЕ то	ЧКИ ПРИ
ПЛОС	КОМ ДВИЖЕНИИ ТВЕРДОГО ТЕЛА.	11

1. Векторный, координатный и естественный способы

Стр.

15

ТЕМА: «1. ВЕКТОРНЫЙ И КООРДИНАТНЫЙ СПОСОБЫ ЗАДАНИЯ ДВИЖЕНИЯ ТОЧКИ. СКОРОСТЬ И УСКОРЕНИЕ ТОЧКИ».

- 1. Векторное и скалярные уравнения движения точки.
- 2. Как из уравнений движения точки получить уравнение траектории?
- 3. Векторное и скалярные уравнения скорости точки. Формулы расчёта модуля скорости и направляющих косинусов.
- 4. Векторное и скалярные уравнения ускорения точки. Формулы расчёта модуля ускорения и направляющих косинусов.
- 1.1. По данному уравнению движения точки на произвольно выбранной траектории построить через равные промежутки времени шесть положений точки, определить расстояние s по траектории от начала отсчета до конечного положения точки и пройденный ею путь σ за указанный промежуток времени (s и σ в сантиметрах,t в секундах).

1)
$$s = 5-4t + t^2$$
, $0 \le t \le 5$.

Ответ: s = 10 см, $\sigma = 13$ см.

2)
$$s = 1 + 2t - t^2, 0 \le t \le 2,5$$
.

Ответ: s = -0.25 см, $\sigma = 3.25$ см.

3)
$$s = 4 \sin 10t$$
, $\pi / 20 \le t \le 3\pi / 10$.

Ответ: s = 0, $\sigma = 20$ см.

1.2 По данным уравнениям движения точки найти уравнения ее траектории в координатной форме и указать на рисунке направление движения.

1)
$$x = 3t - 5$$
, $y = 4 - 2t$.

Ответ: Полупрямая 2x + 3y - 2 = 0 с началом в точке x = -5, y = 4.

2)
$$x = 2t$$
, $y = 8t^2$.

Ответ: Правая ветвь параболы $y=2x^2$ с начальной точкой x=0, y=0.

3) $x = 5\sin 10t, y = 3\cos 10t.$

Ответ: Эллипс $\frac{x^2}{25} + \frac{y^2}{9} = 1$ с начальной точкой x = 0, y = 3.

4) $x == 2 - 3\cos 5t$, $y = 4\sin 5t - 1$.

Ответ: Эллипс
$$\frac{(x-2)^2}{9} + \frac{(y+1)^2}{16} = 1$$
 начальной точкой $x = -1$, $y=-1$.

5)
$$x = cht = \frac{1}{2} (e^t + e^{-t}), \ y = cht = \frac{1}{2} (e^t + e^{-t})$$

Ответ: Верхняя часть правой ветви гиперболы x^2 - y^2 = 1 с начальной точкой x = 1, y = 0.

- 1.3. По заданным уравнениям движения точки найти уравнение ее траектории, а также указать закон движения точки по траектории, отсчитывая расстояние от начального положения точки.
 - 1) $x = 3t^2$, $y = 4t^2$.

Ответ: Полупрямая 4x - 3y = 0; $s = 5t^2$.

2) x = 3sint, y = 3cost.

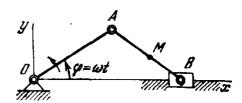
Ответ: Окружность $x^2 + y^2 = 9$; s = 3t.

3) $x = a \cos^2 t$, $y = a \sin^2 t$.

Ответ: Отрезок прямой x+y-a=0, причем $0 \le x \le a$; $s=a\sqrt{2}\sin^2 t$.

4) $x = 5\cos 5t^2$, $y = 5\sin 5t^2$.

Ответ: Окружность $x^2 + y^2 = 25$; $s = 25t^2$.


1.4. Кривошип OA вращается с постоянной угловой скоростью ($\omega=10\,$ рад/с. Длина $OA=AB=80\,$ см. Найти уравнения движения и траекторию средней точки M шатуна, а также уравнение движения ползуна B, если в начальный момент ползун находился в крайнем правом положении; оси координат указаны на рисунке.

Omeem: 1) $x_{M} = 120\cos 10t, y_{M} = 40\sin 10t.$

2) Траекторией точки М является эллипс

$$\frac{x^2}{120^2} + \frac{y^2}{40^2} = 1;$$

2) уравнение движения ползуна Bx = 160cos10t.

К задаче 1.4.

1.5.Кривошип OA вращается с постоянной угловой скоростью ω . Найти скорость середины M шатуна кривошипно-ползунного механизма и скорость ползуна B в зависимости от времени если OA = AB = a (см. рисунок к задаче 10.12).

Ombem: 1)
$$v_M = \frac{a}{2} \omega \sqrt{8 \sin^2 \omega t + 1}$$
; 2) $v_B = 2a\omega \sin \omega t$.

1.6. Движение точки задано уравнениями $x = v_0 t cos \alpha_0$, $y = v_0 t sin \alpha_0 - 1/2 gt^2$, причем ось Ox горизонтальна, ось Oy направлена по вертикали вверх, v_0 , g и $\alpha_0 < \pi/2$ - величины постоянные. Найти: 1) траекторию точки, 2) координаты наивысшего ее положения, 3) проекции скорости на координатные оси в тот момент, когда точка находится на оси Ox.

Ответ: 1) Парабола
$$y = xtg\alpha_0 - \frac{g}{2v_0^2\cos^2\alpha_0}x^2;$$
 2)

$$x = \frac{v_0^{21}}{2g} \times \sin^2 \alpha_0, \qquad y = \frac{v_0^{21}}{2g} \times \sin^2 \alpha_0, \qquad 3) \qquad v_x = x_0 \cos \alpha_0,$$

 $v_v = \pm v_0 \sin \alpha_0$, причем верхний знак соответствует начальному

моменту времени, а нижний - моменту
$$t = \frac{2v_0 \sin \alpha_0}{g}$$
 .

1.7. Ползун движется по прямолинейной направляющей с ускорением $\omega_x = -\pi^2 \sin \frac{\pi}{2} t$ м/с. Найти уравнение движения ползуна, если его начальная скорость $v_{0x} = 2\pi$ м/с, а начальное положение совпадает со средним положением ползуна, принятым за начало координат. Построить кривые расстояний, скоростей и ускорений.

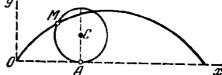
Otbet:
$$x = 4\sin\frac{\pi}{2}t_{\text{M}}$$
.

2.1. Поезд движется равнозамедленно по дуге окружности радиусаR=800 м и проходит путьз = 800 м, имея начальную скорость

 $v_0 = 54$ км/ч и конечнуюv = 18 км/ч. Определить полное ускорение поезда в начале и в конце дуги, а также время движения по этой дуге.

Omsem: $\omega_0 = 0.308 \text{ m/c}^2$, $\omega_0 = 0.129 \text{ m/c}^2$, T = 80 c.

2.2. Точка движется по дуге окружности радиуса R=20 см. Закон ее движения по траектории: $s=20\sin\pi t(t-s)$ в секундах, s-s сантиметрах). Найти величину и направление скорости, касательное, нормальное и полное ускорения точки в момент t=5 с. Построить также графики скорости, касательного и нормального ускорений.


Ответ: Скорость равна по величине 20π см/с и направлена в сторону, противоположную положительному направлению отсчета дуги s; $\omega_t = 0; v_0 = \omega_n = 20\pi^2$ см/с².

2.3. Уравнения движения пальца кривошипа дизеля в период пуска имеют вид $x=75\cos 4t^2$, $y=75\sin 4t^2$ (x, y — в сантиметрах, t - в секундах). Найти скорость, касательное и нормальное ускорения пальца.

Ombem: $v = 600t \text{ cm/c}, \omega_t = 600 \text{ cm/c}^2, \omega_n = 4800t^2 \text{ cm/c}^2.$

2.4. Найти величину и направление ускорения, а также радиус кривизны траектории точки колеса, катящегося без скольжения по горизонтальной оси Ox, если точка описывает циклоиду согласно уравнениямx = 20t— $\sin 20t$, $y = 1 - \cos 20t$ (t—в секундах, x, y - в метрах). Определить также значение радиуса кривизны ρ при t = 0.

Ответ: Ускорение $\omega = 400 \text{ м/c}^2 \text{ и}$ направлено по MC к центру C катящегося круга; $\rho = 2MA, \rho_0 = 0$.

К задаче 2.4.

2.5. Снаряд движется в вертикальной плоскости согласно уравнениям x=300t, y=400t – 5t 2 (t - в секундах, x, y — в метрах). Найти: 1) скорость и ускорение в начальный момент, 2) высоту и дальность обстрела, 3) радиус кривизны траектории в начальной и в наивысшей точках

Ответ: $v_0 = 500$ м/с. $\omega_0 = 10$ м/с², h = 8 км, s = 24 км, $\rho_0 = 41,67$ км, $\rho = 9$ км.

2.6. Точка движется по винтовой линии согласно уравнениям $x = 2\cos 4t$, $y = 2\sin 4t$, z = 2t, причем за единицу длины взят метр.

Определить радиус кривизны р траектории.

Ответ:
$$\rho = 2 \frac{1}{8}$$
 м.

ТЕМА: «ПОСТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА».

- 1. Поступательное движение твёрдого тела.
 - 1.1. Что является уравнением поступательного движения твёрдого тела?
 - 1.2. Свойства траекторий точек тела при поступательном его лвижении.
 - 1.3. Свойство скоростей и ускорений.
- 2. Вращательное движение твёрдого тела.
 - 2.1. Уравнение вращения.
 - 2.2. Алгебраические выражения угловой скорости и углового ускорения.
 - 2.3. Алгебраические выражения скорости точки тела, её касательного, нормального и полного ускорений.
 - 2.4. Векторные выражения углового ускорения (как производной от угловой скорости), скорости точки тела, касательного и нормального ее ускорений.
 - 2.5. Зависимость угловой скорости от времени и уравнение вращения при равномерном и равнопеременном вращении.
- 3.1. Написать уравнение вращения диска паровой турбины при пуске в ход, если известно, что угол поворота пропорционален кубу времени и приt=3 с угловая скорость диска равна $\omega=27\pi$ рад/с.

Ответ: $\varphi = \pi t^3 pa \partial$.

3.2. Тело, начиная вращаться равноускоренно из состояния покоя, делает 3600 оборотов в первые 2 минуты. Определить угловое ускорение.

Ответ: $\varepsilon = \pi$ рад/ c^2 .

3.3. Вал начинает вращаться равноускоренно из состояния покоя; в первые 5 с он совершает 12,5 оборота. Какова его угловая скорость по истечении этих 5 с?

Ответ: ω = 10π рад/с.

3.4. Маховое колесо радиуса 0,5 м вращается равномерно вокруг своей оси; скорость точек, лежащих на его ободе, равна 2 м/с. Сколько оборотов в минуту делает колесо?

Ответ: n = 38,2 об/мин.

3.5. Точка A шкива, лежащая на его ободе, движется со скоростью 50 см/с, а некоторая точка B, взятая на одном радиусе с точкой A, движется со скоростью 10 см/с;

расстояние AB=20 см. Определить угловую скорость ω и диаметр шкива.

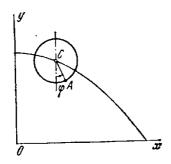
Ответ: ω = 2 рад/с,d = 50 см.

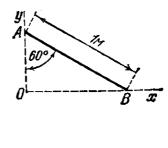
3.6. Маховое колесо радиусаR=2м вращается равноускоренно из состояния покоя; черезt=10 с точки, лежащие на ободе, обладают линейной скоростью v=100 м/с. Найти скорость, нормальное и касательное ускорения точек обода колеса для момента t=15 с.

Ombem: v = 150 m/c, $\omega n = 11250 \text{ m/c}^2$, $\omega_{\tau} = 10 \text{ m/c}^2$.

- 3.7. Угол наклона полного ускорения точки обода махового колеса к радиусу равен 60°. Касательное ускорение ее в данный момент $\omega_{\tau}=10\sqrt{3}~\text{м/c}^2$. Найти нормальное ускорение точки, отстоящей от оси вращения на расстоянии r=0,5~м. Радиус махового колеса R=1~м. Ответ: $\omega_{r}=5~\text{m/c}^2$.
- 3.8. Вал радиусаR=10 см приводится во вращение гирей P, привешенной к нему на нити. Движение гири выражается уравнением $x=100t^2$, где x расстояние гири от места схода нити с поверхности вала, выраженное в сантиметрах, t время в секундах. Определить угловую скорость ω и угловое ускорение ε вала, а также полное ускорение ω точки на поверхности вала в момент t.

Ответ: ω =20t рад/с, ε =20 рад/с², ϖ = $200\sqrt{1+400t^4}$ см/с².


К задаче 3.5.


К задаче 3.8.

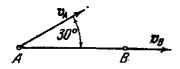
ТЕМА: «ПЛОСКОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА И ДВИЖЕНИЕ ПЛОСКОЙ ФИГУРЫ В ЕЕ ПЛОСКОСТИ. СКОРОСТЬ И УСКОРЕНИЕ ТОЧКИ ПРИ ПЛОСКОМ ДВИЖЕНИИ ТВЕРДОГО ТЕЛА».

- 1. Определение плоского движения тела.
- 2. Уравнения плоского движения тела.
- 3. Основная теорема о скоростях точек тела (формула).
- 4. Свойство проекции скоростей двух точек тела при плоском его движении на линию, соединяющую эти точки (формулировка).
- 5. Свойство деления прямой, соединяющей концы векторов \overline{V} двух точек A и B тела вектором $\overline{V_C}$ третьей (промежуточной) точки C (точки A, B и C лежат на одной прямой).
- 6. Мгновенный центр скоростей (М.Ц.С.).
 - 1) Определение и правило его нахождения.
 - 2) Правила определения положения М.Ц.С. в различных частных случаях.
 - 3) Расчёт скорости точки тела через М.Ц.С.
- 4.1. При движении диска радиуса r=20 см в вертикальной плоскости xy его центр C движется согласно уравнениям $x_c=10t$ м, $y_c=(100-4,9t^2)$ м. При этом диск вращается вокруг горизонтальной оси C, перпендикулярной плоскости диска, с постоянной угловой скоростью $\omega=\pi/2$ рад/с. Определить в момент времени t=0 скорость точки A, лежащей на ободе диска. Положение точки A на диске определяется углом $\phi=\omega t$, отсчитываемым от вертикали против хода часовой стрелки.

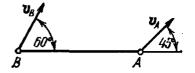
Ответ: Скорость направлена по горизонтали вправо и равна по модулю 10,31 м/с.

К задаче 4.1.

К задаче 4.3.


4.2. Сохранив условие предыдущей задачи, определить скорость точки A в момент времени t=1 с.

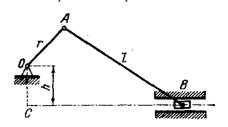
Omeem: $V_{AX} = 10 \text{ m/c}$, $V_{AY} = -9,49 \text{ m/c}$, $V_A = 13,8 \text{ m/c}$.


4.3. Стержень AB длины 1 м движется, опираясь все время своими концами на две взаимно перпендикулярные прямые Ox и Oy. Найти координаты x и yмгновенного центра скоростей в тот момент, когда yгол OAB = 60°.

Omeem: x = 0.866 M, v = 0.5 M.

4.4. Прямая AB движется в плоскости рисунка. В некоторый момент времени скорость V_A точки A составляет с прямой AB угол 30° и равна 180 см/с, направление скорости точки B в этот момент совпадает с направлением прямой AB. Определить скорость V_B точки B. Отвеет: V_B = 156 см/с.

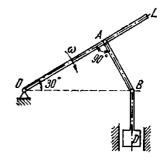
К задаче 4.4.


К задаче 4.5.

4.5.Стержень AB длины 0.5 м движется в плоскости рисунка. Скорость $v_A(V_A=2\,\text{ м/c})$ образует угол 45° с осью x, совмещенной со стержнем.Скорость v_B точки B образует угол 60° с осью x. Найти модуль скорости точки B и угловую скорость стержня.

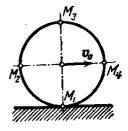
Ответ: V_B = 2,82 м/с, ω = 2,06 рад/с.

4.6. Найти скорость ползуна B нецентрального кривошипного механизма при двух горизонтальных двух вертикальных положениях кривошипа, вращающегося вокруг вала О с угловой скоростью ω=1,5 рад/с, если OA=40 см. AB=200 см. OC = 20 cm.


 $Omsem: v_1 = v_3 = 6.03 \text{ cm/c},$ $v_2 = v_4 = 60 \text{ cm/c}$.

К задаче 4.6.

4.7. Поршень D гидравлического пресса приводится в движение посредством шарнирно-рычажного механизма *OABD*. В положении, указанном на рисунке, рычаг OL имеет угловую скорость $\omega = 2$ рад/с. Определить скорость поршня D и угловую скорость звена AB, если OA = 15 см.

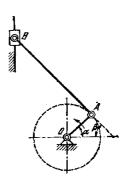

Ответ: $V_D = 34,6$ см/с, $\omega_{AB} = 2$ рад/с.

К задаче 4.7.

4.8. Колесо радиусаR = 0.5 м катится без скольжения по прямолинейному участку пути; скорость центра его постоянна и равна $v_0 = 10$ м/с. скорости концов M_{I} , Найти M_2 M_4 вертикального и горизонтального диаметров колеса. Определитьего угловую скорость.

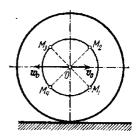
Omeem: $v_1 = 0$, $v_2 = 14,14$ m/c, $v_3 = 20$ m/c, v_4 =14,14 м/с, $\omega=20$ рад/с.

К задаче 4.8.


«РАСЧЁТ УСКОРЕНИЙ ТОЧЕК ТЕЛА ПРИ ПЛОСКОМ ЕГО ДВИЖЕНИИ».

- 1. Основная теорема об ускорении точки тела при плоском его движении (векторная формула).
- 2. Векторные и алгебраические формулы вращательной и центростремительной составляющих.
- 3. Формулировки первого и второго следствий из основной теоремы.
- 4. Методы определения мгновенного центра ускорений (М.Ц.У).
- 5. Методы расчёта ускорений точек тела посредством М.Ц.У.
- 6.1. При движении диска радиуса r=20 см в вертикальной плоскости xy его центр C движется согласно уравнениям $x_c=10t$ м, $y_c=(100-4,9t^2)$ м. При этом диск вращается вокруг горизонтальной оси C, перпендикулярной плоскости диска, с постоянной угловой скоростью $\omega=\pi/2$ рад/с (см. рисунок к задаче 4.1.). Определить в момент времени t=0 ускорение точки A, лежащей на ободе диска. Положение точки A на диске определяется углом $\phi=\omega t$, отсчитываемым от вертикали, против хода часовой стрелки.

Ответ: Ускорение направлено по вертикали вниз и равно по модулю 9.31 м/c^2 .


6.2. Кривошип OA длины 20см вращается равномерно с угловой скоростью $\omega_0 = 10$ рад/с и приводит в движение шатун AB длины 100 см; ползун B движется по вертикали. Найти угловую скорость и угловое ускорение шатуна, а также ускорение ползуна B в момент, когда кривошип и шатун взаимно перпендикулярны и образуют с горизонтальной осью углы $\alpha = 45^{\circ}$ и $\beta = 45^{\circ}$.

Ответ: ω = 2 рад/с, ε = 16 рад/с², $ω_B = 565,6$ c_M/c^2 .

К задаче 6.2.

6.3. Вагон трамвая движется по прямолинейному горизонтальному участку пути с замедлением $\omega_0 = 2$ м/с², имея в данный момент скорость $v_0 = 1$ м/с. Колеса катятся по рельсам без скольжения. Найти ускорения концов двух диаметров ротора, образующих с вертикалью углы по 45°, если радиус колеса R = 0.5 м, а ротора r = 0.25 м.

Ответ: $\omega_1 = 2,449 \text{ м/c}^2$, $\omega_2 = 3,414 \text{ м/c}^2$, $\omega_3 = 2,449 \text{ м/c}$, $\omega_4 = 0,586 \text{ K}$ задаче 6.3.

Литература

а) основная:

- 1. Митюшов, Е. А. Теоретическая механика [Текст] : учебник для студентов вузов / Е. А. Митюшов, С. А. Берестова. 2-е изд. ; перераб. Москва : Академия, 2011. 320 с. (Бакалавриат).
- 2. Лачуга, Ю. Ф. Теоретическая механика [Текст]: учебник для студентов высших аграрных заведений, обучающихся по агроинженерным специальностям / Ю. Ф. Лачуга, В. А. Ксендзов. 3-е изд.; перераб. и доп. М.: КолосС, 2010. 576 с.: ил. (Учебники и учебные пособия для студентов высших учебных заведений).

б) дополнительная:

- 1. Ксендзов, В. А. Теоретическая механика. Курс лекций [Текст] : учебное пособие для студентов высших учебных заведений, обучающихся по направлению "Агроинженерия" / В. А. Ксендзов, А. В. Паршков. Рязань : РГАТУ, 2012. 380 с.
- 2. Бать, М. И. Теоретическая механика в примерах и задачах. Том 1. Статика и кинематика [Текст] : учебное пособие / М. И. Бать, Г. Ю. Джанелидзе, А. С. Кельзон. 12-е изд. ; стер. СПб. : Лань, 2013. 672 с. : ил. (Учебники для вузов. Специальная литература).