МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет имени В.Ф. Уткина»

КАФЕДРА СИСТЕМ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ СРЕДСТВ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Нейрокомпьютеры»

Направление подготовки

02.04.02 Фундаментальная информатика и информационные технологии Направленность (профиль) подготовки «Нейросетевые технологии и интеллектуальный анализ данных»

> Квалификация (степень) выпускника — магистр Форма обучения — очная

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности универсальных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях. При оценивании результатов освоения практических занятий применяется шкала оценки «зачтено — не зачтено». Количество практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена.

Форма проведения экзамена — письменный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения экзаменационной оценки.

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	Искусственные нейронные сети	УК-1, ПК-1	экзамен
2	Нейропроцессоры и нейрокомпьютеры	УК-1, ПК-1	экзамен
3	Организация описание цифровых систем, нейронных сетей и нейрокомпьютеров на языке VHDL	УК-1, ПК-1	экзамен

Паспорт фонда оценочных средств по дисциплине

Шкала оценки сформированности компетенций

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме экзамена, используется пятибалльная оценочная шкала:

«Отлично» заслуживает обучающийся, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется обучающимся, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании

учебно-программного материала. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

«Хорошо» заслуживает обучающийся, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется обучающимся, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

«Удовлетворительно» заслуживает обучающийся, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется обучающимся, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

«Неудовлетворительно» выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий или не выполнившему предусмотренных в течение семестра практических заданий. Как правило, оценка «неудовлетворительно» ставится обучающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Типовые вопросы к практическим занятиям по дисциплине

- 1. Каково назначение языка VHDL?
- 2. Перечислите основные этапы проектирования дискретных управляющих и вычислительных систем и устройств?
 - 3. Какие возможности по моделирования предоставляет среда Modelsim?
 - 4. Перечислите основные окна среды моделирования Modelsim.
 - 5. Является ли корректным идентификатор 8mail?
 - 6. Какими символами обозначается комментарий в VHDL?
 - 7. Перечислите основные литералы языка VHDL.
 - 8. Могут ли значения подтипа быть переданы типу?
 - 9. В языке VHDL значение "истина" типа Boolean равно значению '1' bit?
 - 10. Являются ли различными следующие идентификаторы: Abc7, aBC7?
 - 11. Над операндами каких типов может выполняться оператор хог?
 - 12. Приведите определение интерфейса объекта проекта.
 - 13. В чем заключается отличие СДНФ от СКНФ?
- 14. Какой принцип лежит в основе минимизации логической функции методом карт Карно?
 - 15. Что такое дельта-задержка?
 - 16. Как обрабатываются логические сигналы?
 - 17. Что такое ключевое соответствие портов?
 - 18. Что такое позиционное соответствие портов?
- 19. Могут ли употребляться операторы port map вместе с операторами назначения сигнала в архитектурном теле?
 - 20. Правильно ли, что операторы port map обязательно должны иметь метки?
 - 21. Есть ли в языке VHDL ограничение на число уровней иерархии VHDL-проектов?
 - 22. Что такое структурное описание цифровой системы?
 - 23. Может ли структурное описание быть иерархическим?

- 24. Какие описания в иерархическом описании логической схемы обязательно должны быть поведенческими (не имеют структурных описаний)?
 - 25. Что такое параметр генерации?
 - 26. Опишите способы употребления оператора генерации.
- 27. Объясните отличия параллельного оператора генерации от последовательных операторов for, if.
 - 28. Поясните принцип работы механизма передачи параметров.
 - 29. Каковы особенности оператора generic map?
- 30. Может ли настраиваемый параметр (generic) динамически меняться во время моделирования VHDL-кода?
- 31. Какие операторы (последовательные либо параллельные) могут находиться в теле оператора generate?
 - 32. Что может содержаться в VHDL-пакете?
- 33. Каково основное назначение пакета STD_LOGIC_1164? Что содержится в данном пакете?
 - 34. Дайте определение конечного автомата.
 - 35. Что представляет собой микропрограммный автомат?
 - 36. В чем заключается отличие автомата Мили от автомата Мура?
- 37. Какие сигналы в автомате Мура полностью определяются внутренними состояниями автомата?
- 38. 8. Сколько значений (и какие) имеет тип std_logic, декларированный в пакете STD_LOGIC_1164? Является ли этот тип перечисляемым?
- 39. Сколькими процессами языка VHDL обычно описывается функционирование конечного автомата?
- 40. Изменение какого сигнала вызывает переключение внутреннего состояния конечного автомата?
 - 41. Дайте определение триггера.
 - 42. Что представляет собой атрибут?
 - 43. Перечислите наиболее важные предопределенные атрибуты.
 - 44. За что отвечает атрибут event?
 - 45. Назовите основные атрибуты типа «массив».
 - 46. Как задаются атрибуты, определенные пользователем?
 - 47. Какое устройство называется D-триггером?
 - 48. Объясните принцип работы D-триггера.
 - 49. Перечислите способы моделирования триггеров.
 - 50. Будут ли дельта-задержки при моделировании оператора Y <= not Y after 3 ns;?
 - 51. Перечислите основные последовательные операторы.
 - 52. Перечислите основные параллельные операторы.
- 53. Какие операторы (последовательные либо параллельные) могут находиться в теле функции?
- 54. Какие операторы (последовательные либо параллельные) могут находиться в теле процесса?
- 55. Какой оператор считается как последовательным, так и параллельным в зависимости от контекста его использования?
 - 56. Запишите декларацию одномерного массива целых чисел.
 - 57. Где могут быть декларированы подпрограммы?
 - 58. Имеет ли функция свое уникальное имя?
 - 59. Может ли оператор port map быть употреблён в функции?
- 60. Есть ли ограничение на количество процедур в разделе деклараций архитектурного тела?
 - 61. Обязательна ли метка при вызове процедуры в архитектурном теле?
 - 62. Дайте определение пакета в VHDL.

- 63. Может ли подпрограмма быть декларирована в пакете?
- 64. Перечислите первичные и вторичные блоки проекта.
- 65. Как происходит моделирование VHDL-описаний?
- 66. Как осуществить вывод сообщения в окно Transcript?
- 67. Дайте определение понятию ПЛИС.
- 68. Из чего состоит микросхема ПЛИС?
- 69. Чем характеризуются ПЛИС семейства Cyclone IV?
- 70. Опишите структуру ПЛИС семейства Cyclone IV E.
- 71. В чем заключается задача компилятора в САПР для проектирования ПЛИС?
- 72. Перечислите наиболее популярные САПР для проектирования ПЛИС.
- 73. Чем отличается САПР Quartus II от САПР Quartus Prime?
- 74. Назовите этапы проектирования в САПР Intel Quartus II.
- 75. Опишите процесс задания соответствия физических портов ПЛИС.
- 76. Перечислите шаги процесса моделирования проекта.
- 77. Дайте определение дешифратора.
- 78. Опишите принцип работы дешифратора.
- 79. Перечислите способы применения дешифраторов.
- 80. Дайте определение шифратора.
- 81. Опишите принцип работы шифратора.
- 82. Перечислите способы применения шифраторов.
- 83. Что такое семисегментный индикатор?
- 84. Опишите схему дешифратора из двоичного кода в десятичный.
- 85. Перечислите методы моделирования шифраторов входных комбинаций с прямым унитарным кодированием 4 в 2 на языке VHDL.
 - 86. Как осуществляется работа с модулем дисплея на ПЛИС семейства Cyclone IV E?

Типовые задания для практической и самостоятельной работы

- 1. Разработать проект VHDL-модели с заданным количеством входных логических переменных и логических операций.
- 2. По заданной таблице истинности системы логических функций разработать проект VHDL-модели и выполнить моделирование на всех наборах значений входных переменных.
- 3. Для заданной нерегулярной логической схемы составить структурное VHDLописание, выполнить моделирование и найти критический путь к схеме.
- 4. Разработать проект VHDL-модели для заданной регулярной логической схемы, составить тест и провести моделирование.
 - 5. Разработать проект VHDL-модели триггера.
 - 6. Разработать проект VHDL-модели конечного автомата.
- 7. Написать на языке VHDL требуемые функции и процедуры, провести их моделирование.
 - 8. Разработать проект VHDL-модели триггера на базе ПЛИС Cyclone IV E.
- 9. Разработать проект VHDL-модели дешифратора заданной разрядности на базе ПЛИС Cyclone IV E.
- 10. Разработать проект VHDL-модели для заданной математической операции цифрового калькулятора с вводом данных с клавиатуры на базе ПЛИС Cyclone IV E.
- 11. Разработать проект VHDL-модели искусственного нейрона на базе ПЛИС Cyclone IV E.
- 12. Разработать проект VHDL-модели нейросетевой архитектуры заданного типа на базе ПЛИС Cyclone IV E.

Типовые вопросы к экзамену по дисциплине

- 1. Основные идеи и принципы возникновения концепции искусственных нейронов.
- 2. Значение и области применения нейронных сетей в современных технологиях.

- 3. Ключевые понятия и определения, связанные с моделью искусственного нейрона.
- 4. Структура модели искусственного нейрона и ее компоненты.
- 5. Входы нейрона и их параметры.
- 6. Роль и значение весов в нейронной модели.
- 7. Функции активации и их влияние на работу нейрона.
- 8. Математическая модель нейрона.
- 9. Формула вычисления суммарного входа нейрона.
- 10. Виды функций активации, используемых в моделях нейронов.
- 11. Процесс обучения нейрона и его основные этапы.
- 12. Метод корректировки весов и его особенности.
- 13. Обучающие примеры и роль ошибки нейрона.
- 14. Основные алгоритмы обучения нейронных сетей.
- 15. Однослойный персептрон.
- 16. Алгоритм обучения однослойного персептрона.
- 17. Условия сходимости алгоритма.
- 18. Линейная разделимость данных и ее значение для обучения.
- 19. Ограничения персептрона при решении нелинейных задач.
- 20. Причины невозможности обучения нелинейных разделимых данных простым персептроном.
 - 21. Многослойный персептрон.
 - 22. Архитектура и основные компоненты многослойного персептрона.
 - 23. Передача сигнала в сети и особенности обучения.
 - 24. Проблема затухания градиентов и способы ее преодоления.
 - 25. Обучение многослойных сетей с использованием метода встречного распространения.
 - 26. Математическая модель алгоритма обучения и расчет ошибок.
 - 27. Методы оптимизации и регуляризации при обучении.
 - 28. Карты Кохонена.
 - 29. Архитектура и основные характеристики карт Кохонена.
 - 30. Алгоритм обучения и самоорганизации карты Кохонена.
 - 31. Подготовка данных и настройка параметров сети.
 - 32. Особенности обучения и адаптации карты к входным данным.
 - 33. Архитектура сети Хопфилда.
 - 34. Области применения и практическая значимость сети Хопфилда.
 - 35. Правила обновления состояния нейронов в сети.
 - 36. Динамика работы сети и критерии сходимости к устойчивым состояниям.
 - 37. Методы обучения и настройки сети.
 - 38. Ёмкость сети и ее значение.
 - 39. Восстановление образов и устойчивость к шумам.
 - 40. Архитектура сети Хэмминга.
 - 41. Области применения и практическая значимость сетей Хэмминга.
 - 42. Построение сетей Хэмминга и их структура.
 - 43. Методы обнаружения и исправления ошибок.
 - 44. Алгоритмы кодирования и декодирования в сетях Хэмминга.
 - 45. Основные этапы эволюции нейропроцессоров.
- 46. Особенности использования нейропроцессоров в системах искусственного интеллекта.
 - 47. Преимущества внедрения нейропроцессоров в сравнение с традиционными ЦП и ГП.
 - 48. Ключевые понятия, связанные с нейропроцессорами и нейросетями.
 - 49. Классификация нейропроцессоров по архитектуре и функциональным особенностям.
 - 50. Метрики эффективности нейропроцессоров.
 - 51. Методики оценки параметров нейропроцессоров.
 - 52. Архитектура и принципы работы нейропроцессоров.

- 53. Основные компоненты нейропроцессоров.
- 54. Модели реализации нейросетевых вычислений в аппаратуре.
- 55. Подходы к моделированию нейросетевых систем.
- 56. Основные компоненты и структура нейрокомпьютерных систем.
- 57. Этапы становления и развития нейрокомпьютеров.
- 58. Отличие нейрокомпьютеров от классических вычислительных систем.
- 59. Основные понятия и определения в нейрокомпьютерах.
- 60. Виды аппаратных платформ, применяемых для реализации нейрокомпьютеров.
- 61. Отличия между СРU, GPU, ПЦОС и ПЛИС в контексте нейрокомпьютерных систем.
- 62. Требования к аппаратным платформам для поддержки нейросетевых моделей.
- 63. Основные компоненты и структура нейрокомпьютеров на ПЦОС и ПЛИС.
- 64. Принципы построения цифровых систем на базе ПЛИС.
- 65. Особенности конфигурирования и программирования ПЛИС для нейросетей.
- 66. Типы нейросетевых архитектур, эффективно реализуюемых на ПЛИС.
- 67. Основные принципы архитектуры GPU и их применение в нейрокомпьютерах.
- 68. Особенности параллельной обработки на GPU.
- 69. Современные платформы и фреймворки для работы с GPU.
- 70. Методы оптимизации нейросетевых алгоритмов на GPU.