МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Рязанский государственный радиотехнический университет имени В.Ф. Уткина

Кафедра «Космические технологии»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.ДВ.01.02 «Проектирование устройств на ПЛИС»

Направление подготовки - 09.04.01 Информатика и вычислительная техника

ОПОП академической магистратуры «Космические информационные системы и технологии»

Квалификация (степень) выпускника – магистр

Форма обучения — очная

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов (практических заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель — оценить соответствие знаний, умений и владений, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Основная задача – обеспечить оценку уровня сформированности компетенций.

Контроль знаний обучающихся проводится в форме промежуточной аттестации.

Промежуточная аттестация проводится в форме зачета. Форма проведения зачета - тестирование, письменный опрос по теоретическим вопросам и выполнение практического задания.

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции (или ее части) в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

2.1. Уровень освоения компетенций, формируемых дисциплиной:

Описание критериев и шкалы оценивания тестирования:

Шкала оценивания	Критерий		
3 балла	уровень усвоения материала, предусмотренного программой		
(эталонный уровень)	процент верных ответов на тестовые вопросы от 85 до 100%		
2 балла	уровень усвоения материала, предусмотренного программой:		
(продвинутый уровень)	процент верных ответов на тестовые вопросы от 70 до 84%		
1 балл	уровень усвоения материала, предусмотренного программой:		
(пороговый уровень)	процент верных ответов на тестовые вопросы от 50 до 69%		
0 баллов	лов уровень усвоения материала, предусмотренного программой		
	процент верных ответов на тестовые вопросы от 0 до 49%		

Описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий		
3 балла	выставляется студенту, который дал полный ответ на вопрос,		
(эталонный уровень)	показал глубокие систематизированные знания, смог привести		
	примеры, ответил на дополнительные вопросы преподават		

2 балла	выставляется студенту, который дал полный ответ на вопрос, но			
(продвинутый уровень)	на некоторые дополнительные вопросы преподавателя ответил			
	только с помощью наводящих вопросов			
1 балл	выставляется студенту, который дал неполный ответ на вопрос в			
(пороговый уровень)	билете и смог ответить на дополнительные вопросы только с			
	помощью преподавателя			
0 баллов	выставляется студенту, который не смог ответить на вопрос			

Описание критериев и шкалы оценивания практического задания:

Шкала оценивания	Критерий		
3 балла	Задача решена верно		
(эталонный уровень)			
2 балла	Задача решена верно, но имеются неточности в логике решения		
(продвинутый уровень)			
1 балл	Задача решена верно, с дополнительными наводящими		
(пороговый уровень)	вопросами преподавателя		
0 баллов	Задача не решена		

На промежуточную аттестацию выносится: тест, два теоретических вопроса и І задача (системное задание на компьютере). Максимально студент может набрать 12 баллов.

Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «отлично», «хорошо», «удовлетворительно» и «неудовлетворительно», «зачтено», «не зачтено».

Оценка «отлично» выставляется студенту, который набрал в сумме 12 баллов (выполнил все задания на эталонном уровне). Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «**хорошо**» выставляется студенту, который набрал в сумме от 8 до 11 баллов при условии выполнения всех заданий на уровне не ниже продвинутого. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «удовлетворительно» выставляется студенту, который набрал в сумме от 4 до 7 баллов при условии выполнения всех заданий на уровне не ниже порогового. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «неудовлетворительно» выставляется студенту, который набрал в сумме менее 4 баллов или не выполнил все предусмотренные в течение семестра практические задания.

Оценка «зачтено» выставляется студенту, который набрал в сумме не менее 4 баллов при условии выполнения всех заданий на уровне не ниже порогового. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «не зачтено» выставляется студенту, который набрал в сумме менее 4 баллов или не выполнил все предусмотренные в течение семестра практические задания.

3. ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

Nº	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	Основы теории конечных автоматов	ПК-5.2. Разрабатывает инструменты и методы адаптации бизнеспроцессов заказчика к возможностям ИС	Зачет
2	Конструкции и характеристики ПЛИС. Технологии проектирования цифровых устройств на ПЛИС.	ПК-2.2. Управляет результатами НИОКР	Зачет
3	Программирование ПЛИС. Технологии программирования с использованием САПР.	ПК-2.2. Управляет результатами НИОКР	Зачет
4	Моделирование изделий на ПЛИС.	ПК-2.2. Управляет результатами НИОКР	Зачет

а) типовые тестовые вопросы:

Тестирование студентов может проводиться индивидуально по профессиональным темам курса с использованием стендов и на компьютерах в дисплейном классе кафедры КТ в лаборатории №23 Бизнес — инкубатора РГРТУ.

б) типовые практические задания

Практические задания (задачи) выполняются студентами по профессиональным темам курса на лабораторных стендах и на компьютерах в дисплейном классе кафедры КТ в лаборатории Бизнес – инкубатора РГРТУ

в) типовые теоретические вопросы

- Основы булевой алгебры.
- Определение конечного автомата (КА).
- Типы КА: автоматы Мили и Мура.
- Методы описания и задания КА: табличный, графовый, триадный.
- Триггеры, комбинационные схемы.
- Шифраторы и дешифраторы, регистры, счетчики.
- Типы конструкций ПЛИС.
- Технология и оборудование для изготовления ПЛИС.
- Этапы проектирования ПЛИС.
- Пакеты программ для проектирования ПЛИС.
- Фирмы изготовители ПЛИС.
- Языки программирования ПЛИС.
- Модульное программирование.
- Системы автоматизации программирования ПЛИС.
- Пакеты для программирования ПЛИС.

- Основные положения по моделированию изделий на ПЛИС.
- Связь моделирования и проектирования устройств на ПЛИС.
- Пакеты прикладных программ для моделирования цифровых систем.

4. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- Микропроцессорные системы [Электронный ресурс] : учебное пособие для вузов / Е.К. Александров [и др.]. Электрон. текстовые данные. СПб. : Политехника, 2016. 936 с. 978-5-7325-1098-0. Режим доступа: http://www.iprbookshop.ru/59491.html.
- Микушин А.В. Программирование микропроцессоров семейства MCS-51 [Электронный ресурс] / А.В. Микушин, В.И. Сединин. Электрон. текстовые данные. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2007. 169 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/54773.html.

Дополнительная литература:

- Афонин А.А. Микропроцессорная техника в приборах, системах и комплексах ориентации, навигации и управления летательных аппаратов [Электронный ресурс]: учебное пособие к лабораторным работам / А.А. Афонин, Г.Г. Ямашев. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2015. 143 с. 978-5-905916-96-0. Режим доступа: http://www.iprbookshop.ru/40398.html.
- Гуров В.В. Архитектура микропроцессоров [Электронный ресурс] / В.В. Гуров. Электрон. текстовые данные. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 115 с. 978-5-9963-0267-3. Режим доступа: http://www.iprbookshop.ru/56313.html.
- Герасимов А.В. Программируемые логические контроллеры [Электронный ресурс] : учебное пособие / А.В. Герасимов, И.Н. Терюшов, А.С. Титовцев. Электрон. текстовые данные. Казань: Казанский национальный исследовательский технологический университет, 2008. 169 с. 978-5-7882-0569-4. Режим доступа: http://www.iprbookshop.ru/62562.html.