МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Химической технологии»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

«Общая и неорганическая химия»

Направление подготовки

20.03.01 Техносферная безопасность

Направленность (профиль) подготовки «Безопасность технологических процессов и производств»

Квалификация выпускника – бакалавр

Форма обучения – очная

Формой промежуточного контроля в 1 семестре является зачет Формой промежуточного контроля во 2 семестре является экзамен

ПРОМЕЖУТОЧНЫЙ КОНТРОЛЬ. ЗАЧЕТ

Формой промежуточного контроля в 1 семестре является зачет. К зачету допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой.

Форма проведения зачета — тест. Вопросы, в тесте сформулированы с учетом содержания учебной дисциплины.

Вопросы для зачета

- 1. Химия как наука.
- 2. Основные понятия химии.
- 3. Основные положения атомно-молекулярной теории
- 4. Классификация веществ.
- 5. Смеси веществ.
- 6. Основные классы неорганических соединений
- 7. Оксиды
- 8. Основания (гидроксиды металлов)
- 9. Кислоты
- 10. Соли
- 11. Связь между различными классами соединений
- 12. Номенклатура неорганических веществ
- 13. Основные законы химии.
- 14. Основные величины и единицы в химии.
- 15. Строение атома
- 16. Параметры для характеристики атомов
- 17. Строение электронной оболочки атома
- 18. Периодический закон Д.И. Менделеева
- 19. Структура периодической системы элементов Д. М. Менделеева
- 20. Химическая кинетика.
- 21. Скорость гомогенных химических реакций.
- 22. Закон действующих масс.
- 23. Скорость гетерогенных химических реакций.
- 24. Зависимость скорости химической реакции от температуры.
- 25. Уравнение Аррениуса. Энергия активации.
- 26. Химическое равновесие.
- 27. Смещение равновесия.
- 28. Катализ.
- 29. Основные понятия и величины в химической термодинамике.

- 30. Первый закон термодинамики. Энтальпия системы.
- 31. Энергетические эффекты химических реакций и фазовых превращений
- 32. Термохимические законы
- 33. Энтальпия образования химических соединений.
- 34. Энтропия. Направление и предел протекания процессов в изолированных системах.
- 35. Энергия Гиббса и энергия Гельмгольца химической реакции.
- 36. Химическая связь. Виды химической связи.
- 37. Характеристика ковалентной связи.
- 38. Валентность элементов. Гибридизация орбиталей.
- 39. Типы гибридизации. Пространственное строение молекул.
- 40. Донорно-акцепторный механизм образования ковалентной связи.
- 41. Теория строения комплексных соединений.
- 42. Номенклатура комплексных соединений.
- 43. Значение комплексных соединений.
- 44. Общие свойства и классификация дисперсных систем.
- 45. Способы выражения концентрации растворов.
- 46. Идеальный раствор. Законы разбавленных растворов. Давление пара над раствором. Осмотическое давление.
- 47. Законы разбавленных растворов. Температура кипения и замерзания растворов
- 48. Теория электролитической диссоциации.
- 49. Степень и константа диссоциации.
- 50. Ионное произведение воды. Водородный показатель.
- 51. Гидролиз солей.
- 52. Степень и константа гидролиза.
- 53. Значение гидролиза.
- 54. Признаки ОВР. Степень окисления
- 55. Классификация окислительно-восстановительных реакций
- 56. Стандартный электродный потенциал.
- 57. Гальванический элемент.
- 58. Коррозия металлов. Методы защиты от коррозии.
- 59. Электролиз растворов и расплавов.
- 60. Практическое применение электролиза.

Зачет проводится в виде теста. Тестирование осуществляется по билетам. В тесте 10 вопросов и 10 вариантов заданий. Задания выбираются из разных тем, согласно списка вопросов представленных ранее. Никому не дается преимуществ, все отвечают на равные по сложности вопросы в одних и тех же условиях; применяются необходимые меры, предотвращающие искажение результатов (списывание, подсказку и утечку информации о содержании тестов).

При разработке теста использованы различные виды тестовых заданий. В частности:

- Задания с выбором одного правильного ответа;
- Задания с выбором нескольких правильных ответов;
- Расчетное задание;

Пример тестовых вопросов

- 1. Молярная концентрация (в моль/л) раствора H₂SO₄ с массовой долей 15% (плотность 1,105 г/мл) равна:
 - 1) 1,25
 - 2) 1,69

- 3) 3,24
- 4) 3,76
- 2. Значение констант диссоциации сероводородной кислоты равны $K_1 = 8.9 \cdot 10^{-8}$ и $K_1 = 1.3 \cdot 10^{-13}$. Концентрация ионов водорода [H^+] (моль/л) в 0,1 М растворе этой кислоты равна

1) $3,6\cdot10^{-3}$

 $2) 9,4 \cdot 10^{-5}$

3) $5,2\cdot10^{-4}$

4) $8.4 \cdot 10^{-6}$

- 3. Из числа указанных в ряду элементов выберите два элемента, которые проявляют низшую степень окисления, равную –4.
 - 1) Na
 - $_{2)}\,\mathrm{K}$
 - $_{3)}$ Si
 - 4) Mg
 - 5) C
 - 4. При увеличении давления в три раза скорость прямой и обратной реакции в системе

$$4Al + 3O_2 \leftrightarrow 2Al_2O_3 \quad \Delta H < 0$$

- 1) Прямой увеличивается в 27 раз, обратной не изменияется
- 2) Прямой увеличивается в 124 раз, обратной увеличится в 4 раза
- 3) Прямой увеличивается в 6 раз, обратной увеличится в 4 раза
- 4) Прямой уменьшится в 8 раз, обратной увеличится в 4 раза

КРИТЕРИИ ОЦЕНКИ

Ответ студента на зачете оценивается одной из следующих оценок: «зачтено» и «незачтено», которые выставляются по следующим критериям.

<u>При программированном контроле:</u> Оценка «зачтено» выставляется при доле правильных ответов: 60%, менее 60% правильных ответов — «незачет».

При устном ответе:

Оценки «зачтено» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебного и нормативного материала, умеющий свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной кафедрой.

Также оценка «зачтено» выставляется студентам, обнаружившим полное знание учебного материала, успешно выполняющим предусмотренные в программе задания, усвоившим основную литературу, рекомендованную кафедрой, демонстрирующие систематический характер знаний по дисциплине и способные к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Наконец, оценкой «зачтено» оцениваются ответы студентов, показавших знание основного учебного материала в объеме, необходимом для дальнейшей учебы и в предстоящей работе по профессии, справляющихся с выполнением заданий, предусмотренных программой, но допустившим погрешности в ответе на экзамене и при выполнении контрольных заданий, не носящие принципиального характера, когда

установлено, что студент обладает необходимыми знаниями для последующего устранения указанных погрешностей под руководством преподавателя.

Оценка «незачтено» выставляется студентам, обнаружившим пробелы в знаниях основного учебного материала, допускающим принципиальные ошибки в выполнении предусмотренных программой заданий. Такой оценки заслуживают ответы студентов, носящие несистематизированный, отрывочный, поверхностный характер, когда студент не понимает существа излагаемых им вопросов, что свидетельствует о том, что студент не может дальше продолжать обучение или приступать к профессиональной деятельности без дополнительных занятий по соответствующей дисциплине

промежуточный контроль экзамен

Формой промежуточного контроля во 2 семестре является экзамен. К экзамену допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой.

Форма проведения экзамена – тест. Вопросы, в тесте сформулированы с учетом содержания учебной дисциплины.

Вопросы для подготовки к экзамену

- 1. Водород. Общая характеристика элемента. Нахождение в природе. Получение водорода. Химические и физические свойства. Основные соединения. Применение
- 2. Элементы IA подгруппы. Щелочные металлы. Общая характеристика элементов. Нахождение в природе. Получение и применение. Физические и химические свойства.
- 3. Элементы IIA подгруппы. Берилий, магний, щелочноземельные металлы. Общая характеристика элементов. Нахождение в природе, получение и применение. Физические и химические свойства.
- 4. Элементы IIIA подгруппы. Электронное строение атомов, общая характеристика элементов, закономерности изменения физико-химических свойств.
- 5. Бор. Нахождение в природе. Получение и применение. Гидриды бора, их получения и свойства. Соединения с металлами, их получение и свойства. Карбид бора. Оксид бора и борные кислоты.
- 6. Алюминий. Нахождение в природе, получение, применение. Физические и химические свойства. Алюмотермия. Оксид и гидроксид, свойства и применение. Общая характеристика солей. Алюмосиликаты.
- 7. Галий, индий, талий. Нахождение в природе, получение, применение. Физические и химические свойства. Оксид и гидроксид, свойства и применение. Общая характеристика солей.
- 8. Элементы IVA подгруппы. Электронное строение атомов, общая характеристика элементов, закономерности изменения физико-химических свойств.
- 9. Углерод. Аллотропные модификации. Строение и свойства графита, алмаза, карбина. Фуллерены, углеродные нанотрубки, графен. Кислородные соединения. Оксид углерода (IV), строение молекулы. Свойства, получение, применение СО₂. Угольная кислота и ее соли. Оксид углерода (II), его получение, химическая связь и свойства. Соединения с галогенами: химическая связь и строение молекул, их свойства. Соединения с азотом. Дициан. Синильная кислота, ее соли. Родановодород и его соли.
- 10. Кремний. Нахождение в природе. Силикаты и алюмосиликаты. Силициды металлов, применение. Соединения кремния с водородом (силаны), металлами (силициды), углеродом (карборунд), галогенами и серой. Кремнийорганические

- соединения (силиконы). Оксид кремния (IV). Кремниевые кислоты, их свойства. Соли.
- 11. Германий, олово, свинец. Нахождение в природе. Физические и химические свойства. Применение. Оксиды, гидроксиды и соли: получение, основно-кислотные свойства, окислительно-востановительные свойства. Соединения с водородом, галогенами и серой, их строение и свойства. Применение германия, олова, свинца и их важнейших соединений.
- 12. Элементы VA подгруппы. Электронное строение атомов, общая характеристика элементов, закономерности изменения физико-химических свойств.
- 13. Азот. Нахождение в природе. Получение. Физические и химические свойства. Степени окисления азота. Химическая связь в молекуле азота. Соединения азота с водородом. Аммиак. Промышленные и лабораторные методы его получения. Физические и химические свойства. Соли аммония. Азидоводород и азиды. Оксиды азота. Принципиальная возможность получения их из элементарных веществ. Азотистая кислота, ее окислительные и восстановительные свойства. Нитриты, их получение и свойства. Азотная кислота и ее получение. Химическая связь и строение. Окислительные свойства азотной кислоты. Действия азотной кислоты на металлы и неметаллы. Нитраты, их получение и свойства. Термическое разложение нитратов.
- 14. Фосфор. Аллотропные модификации. Фосфиды металлов. Фосфин, его получение и свойства. Ион фосфония, структура и химическая связь. Оксиды фосфора (III, V), их получение, строение и свойства. Соли фосфорных кислот. Фосфорные удобрения. Неорганические полимеры на основе соединений фосфора.
- 15. Мышьяк, сурьма, висмут. Нахождение в природе и получение в свободном состоянии. Степени окисления. Соединения мышьяка, сурьмы и висмута с металлами. Соединения с водородом. Арсин. Гидриды сурьмы и висмута, их относительная устойчивость. Оксиды мышьяка, сурьмы и висмута и соответствующие гидроксиды.
- 16. Элементы VIA подгруппы. Кислород. Общая характеристика элемента. Нахождение в природе. Воздух. Получение кислорода. Его свойства и применение. Химическая связь в молекуле кислорода. Оксиды, их классификация, получение и свойства. Озон, его получение. Химическая связь в молекуле озона, его свойства и применение. Вода. Строение молекулы воды и химическая связь в ней.
- 17. Сера. Общая характеристика. Нахождение в природе и получение. Физические свойства серы. Аллотропия серы. Химические свойства серы. Степени окисления. Соединения серы с водородом. Сероводород. Методы его получения и свойства. Сульфиды. Полисульфиды. Применение сульфидов в промышленности. Кислородные соединения серы. Оксид серы (IV). Сернистая кислота и ее соли (гидросульфиты и сульфиты). Кислотные, восстановительные и окислительные свойства сернистой кислоты. Тиосернистая кислота, ее строение, свойства. Политионовые кислоты и политионаты. Оксид серы (VI), его получение и свойства. Серная кислота, ее свойства, строение молекулы. Применение в промышленности. Соли серной кислоты (гидросульфаты, сульфаты). Олеум и дисерная кислота. Гидросульфаты. Пероксокислоты серы.
- 18. Селен, теллур, полоний. Общая характеристика. Степени окисления. Водородные соединения селена, теллура и полония и их свойства. Селениды и теллуриды как полупроводники. Оксиды и гидроксиды селена (IV), теллура (IV) и полония (IV). Селенистая и теллуристая кислоты. Селениты и теллуриты. Оксиды селена (VI) и теллура (VI). Селеновая и теллуровая кислоты.
- 19. Элементы VIIA подгруппы. Галогены. Общая характеристика галогенов. Нахождение в природе, способы получения. Физические и химические свойства. Химическая связь в молекулах. Водородные соединения галогенов, их получение, применение. Ассоциация молекул фтороводородов. Кислородные соединения

- галогенов. Фторид кислорода. Кислородсодержащие кислоты хлора, брома, йода, их соли.
- 20. Основные свойства d-элементов и их соединений. Основные закономерности химии d-элементов. Электронная структура. Проявляемые степени окисления. Физические и химические свойства. Комплексные соединения переходных металлов (примеры).
- 21. Элементы **IVB-VIIB** подгрупп. Электронное строение обшая характеристика элементов. Физико-химические свойства. Применение.
- 22. Элементы VIIIВ подгруппы. Семейство железа и платиновые металлы. Электронное строение атомов, общая характеристика элементов. Физикохимические свойства. Применение.
- 23. Элементы ІВ подгруппы. Электронное строение атомов, общая характеристика элементов. Физико-химические свойства. Применение.
- 24. Элементы IIB подгруппы. Электронное строение атомов, общая характеристика элементов. Физико-химические свойства. Применение.

Экзамен проводится в виде теста. Тестирование осуществляется по билетам в письменной форме. В экзаменационном тесте 20 вопросов и 5 вариантов заданий. Задания выбираются из разных тем, согласно списка вопросов представленных ранее. Задания в разных вариантах теста равнозначные и одинаковые по сложности. Никому не дается преимуществ, все отвечают на вопросы в одних и тех же условиях; применяются необходимые меры, предотвращающие искажение результатов (списывание, подсказку и утечку информации о содержании тестов). Время теста 45 мин. Допускается проведение экзамена по билетам в устной форме, при других, каких либо обстоятельствах.

При разработке теста использованы различные виды тестовых заданий. В частности:

- Задания с выбором одного правильного ответа;
- Задания с выбором нескольких правильных ответов;
- Задания на отрицание;
- Задания на установление правильной последовательности (УП)
- Задания на установление соответствия (УС)
- Расчетное залание

Пример экзаменационного теста

РГРТУ	Экзаменационный билет № <u>1</u>	Утверждаю
	КАФЕДРА Химической технологии	Зав. кафедрой ХТ
	ДИСЦИПЛИНА Химия	ФИО
	Направление 18.03.01	« <u>»</u> 20г.
1. Кислотные свойства наиболее выражены у оксила, формула которого:		

- - а) Cr₂O₃; б) CrO; в) BeO; г) CrO₃
- 2. Водород выделяется при взаимодействии(несколько вариантов ответа)
 - а) гидрида натрия с водой;
 - б) алюминия с водным раствором щелочи;
 - в) оксида алюминия с водным раствором щелочи;
 - г) железа с разбавленной серной кислотой.
- 3. Гидролизу не подвергаются (несколько вариантов ответа):

- а) перманганат натрия;
- б) сульфат марганца (II);
- в) перманганат калия;
- г) хлорид марганца (II).
- 4. В схеме превращений $Ni(OH)_2 \xrightarrow{+X} NiO(OH) \xrightarrow{+HCl} Y$, X и Y являются веществами, формулы которых:
 - a) H₂O и NiCl₃;
 - в) Cl₂ и NiCl₃;
 - б) Cl₂ и NiCl₂;
 - г) O₂ и NiCl₂.
- 5. Отметьте все верные утверждения: (несколько вариантов ответа)
 - а) все высшие оксиды и гидроксиды элементов IIIA группы являются амфотерными и нерастворимыми в воде;
 - б) как алюминий гидроксид, так и олово(II) гидроксид диссоциируют в воде ступенчато с образованием в качестве анионов только гидроксид-ионов;
 - в) для более полного осаждения алюминий гидроксида из водных растворов солей лучше использовать не растворы щелочей, а раствор гидрата аммиака;
 - г) из металлов, относящихся к p-электронным семействам, только металлы III-A группы образуют оксиды состава 9_2O_3 .
- 6. Установите соответствие между карбидом и типом его кристаллической структуры:
 - 1) атомная;
- a) Fe_3C ;
- 2) ионная;
- б) WC;
- 3) металлоподобная;
- в) SiC;
- г) B₄C;
- д) Al₄C₃;
- 7. Какую минимальную массу (г) гидроксида кальция следует прибавить к 200 г раствора фосфорной кислоты с массовой долей еè 2 % для получения средней соли?
- **8.** a) 8,88; б) 4,44; в) 2,96; г) 5,92.

КРИТЕРИИ ОЦЕНКИ

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

При программированном контроле: Оценка по тесту выставляется пропорционально доле правильных ответов: 90-100% - оценка «отлично» 80-75% - оценка «хорошо» 74-60% - оценка «удовлетворительно» Менее 60% правильных ответов — оценка «неудовлеторительно».

При устном ответе:

В случае неполадок с программным обеспечением допускается устный ответ студента на экзамене по билетам, или по вопросам теста. При устном ответе: ответ студента оценивается по четырехбальной системе: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» которые выставляются по следующим критериям.

«Отлично»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

«Хорошо»:

достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов.

«Удовлетворительно»:

Знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов):

понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Неудовлетворительно»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

ЗАДАНИЯ (ВОПРОСЫ) ДЛЯ ОЦЕНКИ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ И ИНДИКАТОРОВ ИХ ДОСТИЖЕНИЯ

УДК -8.4 Использует правила техники безопасности, производственной санитарии, пожарной безопасности и нормы охраны труда.

Задания открытого типа:

1. При работе в лаборатории в мензурке можно нагревать воду

Па

Нет(правильный ответ)

2. Калий хранят под слоем керосина.

Да (правильный ответ)

Нет

3. Чтобы погасить пламя спиртовки, его следует задуть

Да

Нет(правильный ответ)

4. При проведении опытов с концентрированными растворами кислот и щелочей необходимо всегда надевать резиновые перчатки.

Да (правильный ответ)

Нет

5. При определении запаха вещества пробирку с веществом надо поднести к носу и глубоко вдохнуть.

Да

Нет(правильный ответ)

Задания закрытого типа:

1. Какие меры нужно предпринять при попадании кислоты на кожу

Ответ: При попадании раствора кислоты на кожу, ее следует промыть водой и обработать раствором питьевой соды.

2. Какое правило нужно соблюдать при выполнении опытов с летучими и ядовитыми веществами

Ответ: Опыты с летучими, ядовитыми веществами проводят только под тягой

3. Как правильно растворять серную кислоту

Ответ: Растворять серную кислоту следует вливая ее тонкой струйкой в холодную воду

4. Как необходимо располагать пробирку при нагревании ее с раствором

Ответ: При нагревании растворов в пробирке следует держать ее так, чтобы отверстие было направлено в сторону от себя и работающих соседей.

5. Какие средства защиты рук необходимы при работе с едкими веществами в лаборатории

Ответ: Работу с едкими веществами следует проводить в резиновых перчатках.

ОПК -1.1 Изучает механизмы химических реакций происходящих в технологических процессах и окружающем мире, основываясь на знаниях о стоении вещества, природе химической связи и свойствах различных классов химических элементов, соединений, веществ и материалов

Задания открытого типа:

1. Водородная связь образуется между молекулами метановой кислоты Да (правильный ответ)

Нет

2. Реакция $CH_4 + 2H_2O = CO_2 + 4H_2$ $\Delta H^0_{peakquu} = +164,9$ кДж/моль является экзотермической

Да

Нет(правильный ответ)

3. Гидроксид кальция и гидроксид бериллия относятся щелочам

Ла

Нет(правильный ответ)

4. При нарушении целостности покрытия будет коррозировать сталь, покрытая слоем олова

Да (правильный ответ)

Нет

5. Верно ли утверждение: Порядковый номер элемента в Периодической системе указывает на заряд ядра атома

Да (правильный ответ)

Нет

Задания закрытого типа:

1. Важнейшим следствием термохимического закона Гесса является утверждение, что тепловой эффект химической реакции равен...

Ответ: сумме теплот образования продуктов реакции за вычетом суммы теплот образования исходных веществ с учетом стехиометрических коэффициентов термохимического уравнения реакции

2. Дополите выражение, константа скорости реакции показывает...

Ответ: Скорость процесса при концентрации реагентов 1моль/л

3. Как называется система, обособленная от окружающей среды, не имеющая внутренней поверхности раздела?

Ответ: Система, обособленная от окружающей среды, не имеющая внутренней поверхности раздела называется изолированной

4. Что называется степенью электролитической диссоциации (α)?

Ответ: Отношение числа молекул электролита к числу молекул растворителя

5. **Что называется окислителем в окислительно- восстановительных реакциях?** Ответ: Атом, который отдаёт электроны и повышает свою степень окисления

ОПК -5.1 Осуществляет экспериментальные исследования и испытания по заданной методике, проводит наблюдения, экспериментирует

Задания открытого типа:

1. Температура замерзания раствора ниже температуры замерзания растворителя Да (правильный ответ)
Нет

2. Верно ли утверждение: Чтобы уменьшить скорость реакции между железом и раствором соляной кислоты необходимо измельчить железо

Да (правильный ответ)

Нет

3. Анодное покрытие на стали образуют металлы Au и Cr

Да

Нет(правильный ответ)

4. Ионное произведение воды при 20 0 C равно 14 моль 2 / 2 .

Да (правильный ответ)

Нет

5. Массовую долю растворённого вещества можно рассчитать по формуле $\omega = \frac{m_{B-Ba}}{m_{p-pa}}$

Да (правильный ответ)

Нет

Задания закрытого типа:

1. Как называется метод определения молярной массы растворённого вещества по понижению температуры замерзания его раствора?

Ответ: криоскопией

2. Как называется вещество, изменяющее свою окраску в зависимости от рН среды?

Ответ: индикатором

3. Растворы с одинаковым осмотическим давлением называются

Ответ:

4. Причиной щелочной или кислой реакции растворов многих солей является

Ответ: Их гидролиз

5. Гетерогенная система, состоящая из двух или более фаз с сильно развитой поверхностью раздела, называется

Ответ: дисперсной

- Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО ФГБОУ ВО "РГРТУ", РГРТУ, Коваленко Виктор Васильевич, Заведующий кафедрой ХТ

18.07.25 22:35 (MSK) Простая подпись