ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

«ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ В ЭЛЕКТРОЭНЕРГЕТИКЕ»

1. ОБЩИЕ ПОЛОЖЕНИЯ

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения

недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля),

организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях; по результатам выполнения работы; по результатам выполнения обучающимися индивидуальных заданий; по результатам проверки качества конспектов лекций и иных материалов. При оценивании (определении) результатов освоения дисциплины применяется традиционная система (зачтено, незачтено).

В случае, если студент не выполнил задания, предусмотренные учебным графиком, выставляется оценка «незачтено».

В качестве оценочных средств на протяжении семестра используется компьютерное тестирование.

По итогам курса обучающиеся сдают зачет. Форма проведения зачета — устный ответ, по утвержденным билетам, сформулированным с учетом содержания учебной дисциплины. В билет включается два теоретических вопроса по темам курса.

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Критерии оценивания компетенций (результатов):

- 1). Уровень усвоения материала, предусмотренного программой.
- 2). Умение анализировать материал, устанавливать причинно-следственные связи.
- 3). Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4). Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция)
- 5). Использование дополнительной литературы при подготовке ответов.

Уровень освоения формирования знаний, умений и навыков оценивается в форме бальной отметки:

Сформированность каждой компетенции (или ее части) в рамках освоения данной дисциплины оценивается в процессе проведения зачета с оценкой на в форме бальной отметки:

Оценка «Отлично» — заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

Оценка **«Хорошо»** — заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Оценка «Удовлетворительно» — заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

Оценка «**Неудовлетворительно»** – выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Оценка «Зачтено» — выставляется студенту, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание. Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и контрольной работы, систематическая активная работа на практических занятиях.

Оценка «**Не зачтено**» — выставляется студенту, который не справился с 50% вопросов и заданий билета, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях, компонентах, этапах развития культуры у студента нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

3. ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДИСЦИПЛИНЫ

№	Контролируемые разделы (темы)	Код контролируемой	Наименова
	дисциплины	компетенции	ние
П	(результаты по разделам)	(или её части)	оценочного
			средства
	Основные понятия и определения электромагнитной совместимости технических средств	ПК-1.2; ПК-2.1	Зачет
2	Представление электромагнитных помех в частотной и временной областях. Преобразование Фурье	ПК-1.2; ПК-2.1	Зачет
3	Источники и классификация электромагнитных помех	ПК-1.2; ПК-2.1	Зачет
4	Каналы передачи электромагнитных помех	ПК-1.2; ПК-2.1	Зачет
5	Подавление помех. Пассивные фильтры, ограничители, экраны	ПК-1.2; ПК-2.1	Зачет
	Определение электромагнитной обстановки на объектах электроэнергетики	ПК-1.2; ПК-2.1	Зачет
7	Влияние помех на электроустановки и цепи релейной защиты	ПК-1.2; ПК-2.1	Зачет
8	Влияние электромагнитных помех на цепи управления, телеметрии и средства связи	ПК-1.2; ПК-2.1	Зачет
9	Влияние электромагнитных полей на человека. Нормативная база.	ПК-1.2; ПК-2.1	Зачет

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ И ИНЫЕ МАТЕРИАЛЫ

Для текущего контроля качества усвоения знаний студентами и оценки степени формирования указанных выше компетенций, знаний, умений и практических навыков используется следующий диагностический инструментарий:

- отчет по практике с отметкой руководителя о выполнении отдельных этапов.
- к Отчет о практике основной документ, характеризующий работу студента во время практики.
- н Текст отчета должен быть отредактирован и напечатан с соблюдением правил оформления научных работ, предусмотренных ГОСТом. Структура отчета определяется рго формой. В отчет о учебной практике должны быть включены следующие сведения:
- место прохождения (предприятие, структурное подразделение), сроки практики;
- л характеристики и параметры изученных компонентов, комплексов и технологических процессов электроники и наноэлектроники;
- характеристики и параметры научно-исследовательского или измерительного рборудования, применяемого на предприятии, в структурном подразделении; программ мелытаний продукции;
- к особенности применяемых на предприятии, в структурном подразделении информационных технологий и программных продуктов;
- в предложения по организации и проведению практики;

0

Д И - список использованной литературы.

Типовые контрольные задания или иные материалы

№	Вопрос	
1	Что понимается под электромагнитной совместимостью технических средств и	
	организационным обеспечением электромагнитной совместимости?	
2	Что понимается под техническим обеспечением электромагнитной	
	совместимости?	
3	Виды электромагнитных помех. Узкополосные и широкополосные	
	электромагнитные помехи.	
4	Понятия синфазных и противофазных электромагнитных помех, «земля» и	
	«масса», «уровень помехи» и «помехоподавление».	
5	Относительные логарифмические масштабы.	
6	Переход представления электромагнитных помех из временной области в	
	частотную область и наоборот.	
7	Спектр периодической помехи. Математический аппарат, применяемый для его	
	получения.	
8	Спектральная плотность распределения амплитуд импульсной помехи	
9	«Функциональные» и «нефункциональные» источники электромагнитных	
10	nomex.	
10	«Широкополосный» и «узкополосный» источник электромагнитных помех.	
11	Количественная характеристика. Ширина полосы энергетического спектра	
11	Влияние дуговых печей и сварочных установок, мощных выпрямителей и преобразователи частоты на электромагнитную обстановку.	
12	Технические средства определяющие электромагнитную обстановку в городах.	
13	Физические процессы, происходящие в газоразрядных лампах и приводящие к	
13	появлению электромагнитных помех.	
14	Физические процессы, происходящие на высоковольтных воздушных линиях и	
1.	приводящие к появлению электромагнитных помех	
15	Физические процессы, происходящие в коллекторных электродвигателях, в	
	системах зажигания автомобилей, приводящие к появлению электромагнитных	
	помех	
16	Почему разряд статического электричества, коммутация катушек	
	индуктивности представляет собой источник электромагнитных помех?	
17	Какие процессы в сетях низкого и высокого напряжения вызывают	
	возникновение электромагнитных помех?	
18	Физические процессы при ударе молнии, ядерном взрыве, приводящие к	
1.0	возникновению электромагнитных помех	
19	Классы окружающей среды при передаче электромагнитных помех по	
20	проводам.	
20	Виды возможных связей и путей между контурами проникновения помех.	
21	Способы снижения гальванического влияния и проникновения	
22	электромагнитных помех из одного контура в другой, по цепям заземления.	
22	Способы снижения емкостного влияния и проникновения электромагнитных помех из одного контура в другой, контуров с общим проводом системы	
	опорного потенциала, токовых контуров с большой емкостью относительно	
	земли.	
23	Способы снижения индуктивного влияния и проникновения электромагнитных	
	помех из одного контура в другой, индуктивного влияния разряда статического	
	электричества на корпус прибора.	

24	Опасность индуктивного влияния разряда молнии в молниеотвод при наличии			
	вблизи сигнальных линий, внутри здания образованный проводами питания и			
	сигнальными линиями			
25	Способы снижения помех от излучения электромагнитного поля.			
26	Этапы проведения работ по определению электромагнитной обстановки на			
20	энергообъекте. Исходные данные. Состав работ для определения ЭМО на			
	объекте.			
27	Воздействие на кабели систем релейной защиты технологического управления			
2,	токов и напряжений промышленной частоты при однофазных коротких			
	замыканиях.			
28	Работы, выполняемые при определении возможных уровней напряжений и			
20	токов воздействующих на кабели систем релейной защиты и технологического			
	управления при однофазном коротком замыкании на землю.			
29	Измерение электромагнитных полей радиочастотного диапазона на			
	энергообъектах, на теле человека.			
30	Отрицательное влияние тиристорных преобразователей на питающие			
	электрические сети.			
31	Параллельный и последовательный резонанс в системах электроснабжения.			
32	Физические процессы в электрических машинах, в высоковольтных линиях,			
	силовых трансформаторах переменного тока, силовых конденсаторах,			
	происходящие при несинусоидальном питающем напряжении на их зажимах			
33	Высшие гармонические составляющие напряжения и тока на системы релейной			
	защиты в нормальных, аварийных режимах.			
34	Влияние высших гармонических составляющих напряжения на			
	электрооборудование потребителей: телевизоры, газоразрядные лампы,			
	компьютеры, выпрямительное оборудование, преобразователи частоты, приборы			
	измерения электрической энергии и мощности.			
35	Нормативные значения напряженностей электрических и магнитных полей на			
	рабочих местах и для населения.			

ПОДПИСАНО