МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В Ф. УТКИНА

Кафедра радиотехнических систем

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.02 «Цифровая обработка изображений»

Направление подготовки – 11.04.01 «Радиотехника»

ОПОП академической магистратуры «Радиоэлектронные системы и устройства локации, навигации и управления»

Квалификация (степень) выпускника – магистр

Форма обучения – очная, очно-заочная

Критерии оценивания уровня сформированности компетенций в процессе выполнения практических занятий:

- 41%-60% правильных ответов соответствует пороговому уровню сформированности компетенции на данном этапе ее формирования;
- 61%-80% правильных ответов соответствует продвинутому уровню сформированности компетенции на данном этапе ее формирования;
- 81%-100% правильных ответов соответствует эталонному уровню сформированности компетенции на данном этапе ее формирования.

Сформированность уровня компетенций не ниже порогового является основанием для допуска обучающегося к промежуточной аттестации по данной дисциплине.

Формой промежуточной аттестации по данной дисциплине является экзамен, оцениваемый по принятой в ФГБОУ ВО «РГРТУ» четырехбалльной системе: «неудовлетворительно», «удовлетворительно», «хорошо» и «отлично».

Критерии оценивания промежуточной аттестации представлены в таблице 1.

Таблица 1 - Критерии оценивания промежуточной аттестации (практические занятия, экзамен)

Шкала оценивания	Критерии оценивания					
«зачтено»	студент должен: продемонстрировать общее знание					
	изучаемого материала; знать основную рекомендуемую					
	программой дисциплины учебную литературу; уметь					
	строить ответ в соответствии со структурой излагаемого					
	вопроса; показать общее владение понятийным аппаратом					
	дисциплины; уметь устранить допущенные погрешности в					
	ответе на теоретические вопросы и/или при выполнении					
	практических заданий под руководством преподавателя,					
	либо (при неправильном выполнении практического					
	задания) по указанию преподавателя выполнить другие					
	практические задания того же раздела дисциплины.					
«не зачтено»	ставится в случае: незнания значительной части					
	программного материала; не владения понятийным					
	аппаратом дисциплины; существенных ошибок при					
	изложении учебного материала; неумения строить ответ в					
	соответствии со структурой излагаемого вопроса; неумения					
	делать выводы по излагаемому материалу. Оценка «не					
	зачтено» также ставится студентам, которые не выполнили					
	и защитили лабораторные работы и практические занятия,					
	предусмотренные рабочей программой.					
«ОТЛИЧНО»	«Отлично» заслуживает студент, обнаруживший					
	всестороннее, систематическое и глубокое знание учебно-					

Шкала оценивания	Критерии оценивания						
	программного материала, умение свободно выполнять						
	задания, предусмотренные программой, усвоивший						
	основную и знакомый с дополнительной литературой,						
	рекомендованной программой. Как правило, оценка						
	«отлично» выставляется студентам, усвоившим						
	взаимосвязь основных понятий дисциплины в их значении						
	для приобретаемой профессии, проявившим творческие						
	способности в понимании, изложении и использовании						
	учебно-программного материала.						
«хорошо»	«Хорошо» заслуживает студент, обнаруживший полное						
	знание учебно-программного материала, успешно						
	выполняющий предусмотренные в программе задания,						
	усвоивший основную литературу, рекомендованную в						
	программе. Как правило, оценка «хорошо» выставляется						
	студентам, показавшим систематический характер знаний						
	по дисциплине и способным к их самостоятельному						
	пополнению и обновлению в ходе дальнейшей учебной						
	работы и профессиональной деятельности.						
«удовлетворительн	«Удовлетворительно» заслуживает студент,						
0 >>	обнаруживший знания основного учебно-программного						
	материала в объеме, необходимом для дальнейшей учебы и						
	предстоящей работы по специальности, справляющийся с						
	выполнением заданий, предусмотренных программой,						
	знакомый с основной литературой, рекомендованной						
	программой. Как правило, оценка «удовлетворительно»						
	выставляется студентам, допустившим погрешности в						
	ответе на экзамене и при выполнении экзаменационных						
	заданий, но обладающим необходимыми знаниями для их						
	устранения под руководством преподавателя.						
«не	«Неудовлетворительно» выставляется студенту,						
удовлетворительно	обнаружившему пробелы в знаниях основного учебно-						
»	программного материала, допустившему принципиальные						
	ошибки в выполнении предусмотренных программой						
	заданий. Как правило, оценка «неудовлетворительно»						
	ставится студентам, которые не могут продолжить						
	обучение или приступить к профессиональной						
	деятельности по окончании вуза без дополнительных						
	занятий по соответствующей дисциплине.						

компетенции

ПК-1.1:	Организует и проводит математическое моделирование,
	эксперименты и испытания систем бортового оборудования по
	направлениям, автономно и в составе комплекса
	Знать: принципы работы сенсоров формирования цифровых
	изображений в бортовом оборудовании; математические основы
	принципов дискретизации и квантования непрерывных изображений.
	<u>Уметь</u> : обосновывать выбор инструментов для повышения
	объективных показателей качества цифровых изображений,
	формируемых оптико-электронными системами бортового
	оборудования.
	Владеть: навыками реализации на языках программирования
	алгоритмов обработки изображений для систем, применяемых в
	бортовом оборудовании.

В результате освоения дисциплины (модуля) обучающийся должен

n					
`-₹	TI	2	T	٦T	•
.)	п	а	. І	D	

- принципы работы сенсоров формирования цифровых изображений в бортовом оборудовании; математические основы принципов дискретизации и квантования непрерывных изображений Уметь:
- обосновывать выбор инструментов для повышения объективных показателей качества цифровых изображений, формируемых оптикоэлектронными системами бортового оборудования Владеть:
- навыки реализации на языках программирования алгоритмов обработки изображений для систем, применяемых в бортовом оборудовании

Вопросы к экзамену

- 1. Сенсоры ССД.
- 2. Сенсоры CMOS.
- 3. Интерфейсы цифровых камер.
- 4. Цветные и полутоновые камеры. Шаблон Байера.
- 5. Линейное и пространственное сканирование. Биннинг.
- 6. Показатели качества цифровых изображений.
- 7. Теорема Котельникова для двумерных сигналов. Спектр цифрового изображения.
- 8. Построение гистограммы полутонового изображения, линейное контрастирование.
- 9. Эквализация гистограммы.
- 10. Гамма-коррекция.
- 11. Линейные фильтры для НЧ фильтрации изображения.

- 12. Линейные фильтры выделения границ.
- 13. Нелинейные фильтры: медианный, адаптивный медианный.
- 14. Бинаризация изображений. Выбор порога бинаризации по Отцу.
- 15. Критерий Джонсона при обнаружении оператором объектов на изображении.
- 16.Сенсоры камер инфракрасного диапазона оптического спектра.
- 17. Сравнительная характеристика видимого и инфракрасных диапазонов оптического спектра.
- 18. Алгоритмы комплексирования цифровых полутоновых мультиспектральных изображений.

Примеры заданий для проведения практических занятий

Тема 1

Finish the definition: Full well capacity is the...

- a. Gate capacitance of CCD or CMOS element at the maximum voltage in pF
- b. Maximum number of electrons that register a signal in a pixel
- c. Gate capacitance of CCD or CMOS element at the maximum voltage in nF
- d. Maximum number of electrons that register a signal in a whole camera matrix

Visible lightbandwidth is ...

a.200 - 400 nm

b.200 - 1100 nm

c.400 - 750 nm

d.750 - 1100 nm

Finish the definition: Quantum efficiency is ...

- a. the number of light quants falling on the camera sensor per one second
- b. the number of light quants falling on the camera sensor per one microsecond
- c. the ratio of light that the sensor converts into charge
- d. camera efficiency measured in light quants

If for every 50 photons hitting a pixel, 15 electrons are released, then the sensor quantum efficiency (in percent) is equal...

Wavelengths from 500 nm to 550 nm corresponds to ...

- a. red color
- b. yellow color
- c. green color
- d. cyan color
- e. orange color

Bit depth of 14 bit resolution camera is equal ...

Frame Grabber required with

- a. only analog cameras
- b. both digital and analog cameras
- c. only digital cameras

Analog gain and offset parameters can be adjusted ...

- a. both variants are possible
- b. only after the analog to digital conversion
- c. only before the analog to digital conversion

You can choose your own frame rate and your own resolution for

- a. analog cameras
- b. digital cameras

Advanced feature(s) of digital cameras is (are) ...

- a. Time stamp on image
- b. Partial scan
- c. Frame counter
- d. All of the above is correct

Quantization noise is minimal for

- a. 10 bit ADC
- b. 8 bit ADC
- c. 12 bit ADC

If camera temperature increases from 12°C to 36°C, then the dark current increases by ... times

In low light conditions for image quality increasing is more preferable ...

- a. increase the camera gain
- b. increase the camera exposure

The vast majority of vision systems cameras are

- a. color cameras
- b. greyscale cameras

Dynamic range is ...

a. the measure of how well a camera can represent details when both bright and dark areas are present

- b. the number of signal electrons from light for one pixel
- c. the ratio of good signal caused by light to unwanted noise

Camera Interface with maximum bandwidth is ...

- a. GigE Vision
- b. IEEE1394b
- c. Camera Link
- d. USB3 Vision
- e. IEEE1394a

What interface has the maximum cable length?

- a. GigE Vision
- b. IEEE1394b
- c. Camera Link
- d. USB3 Vision
- e. IEEE1394a

What interface is ideal for multiple cameras setup?

- a. GigE Vision
- b. IEEE1394b
- c. Camera Link
- d. USB3 Vision
- e. IEEE1394a

What interface is ideal for Plug & Play solution (no configuration or multiple vendor software needed – PC operating system manager binds camera automatically)?

- a. GigE Vision
- b. IEEE1394b
- c. Camera Link
- d. USB3 Vision
- e. IEEE1394a

What interface use high speed modified parallel LVDS interface?

- a. GigE Vision
- b. IEEE1394b
- c. Camera Link
- d. USB3 Vision
- e. IEEE1394a

Finish the definition: The physical combining of charges between pixels during readout is ...

a. pixel fusion

- b. quantum efficiency
- c. area scan
- d. binning
- A separate CCD for each color uses solution for color camera
- a. 2-CCD (double Bayer)
- b. 1- CCD (Bayer)
- c. 3- CCD (with R-, G- and B-color filters)

Bayer Pattern has ...

- a. 50 % red pixels, 25 % green pixels, 25 % blue pixels
- b. 33.33 % red pixels, 33.33 % green pixels, 33.33 % blue pixels
- c. 25 % red pixels, 25 % green pixels, 50 % blue pixels
- d. 25 % red pixels, 50 % green pixels, 25 % blue pixels

One of main advantages of line scan sensors is ...

- a. Bayer pattern
- b. very short integration times
- c. high illumination intensity for shooting

For semiconductor wafer inspection, food sorting and film scanning using of sensors is more preferable.

- a. Line scan
- b. Color 3-CCD
- c. Area scan

Тема 2

- 1) Заполнить массив **Img0** данными о яркости пикселей полутонового изображения *Lenna*.
- 2) Построить гистограмму для изображения **Img0** и отобразить её графически.
- 3) Получить перекодировочную таблицу. Выполнить эквализацию. Записать результат в массив **ImgEqual**. Построить гистограмму **ImgEqual**. Отобразить результат эквализации и его гистограмму.
- 4) Найти максимальное и минимальное значение массива **Img0**. Выполнить линейное контрастирование. При контрастировании для каждого пикселя выполнять проверку результата на превышение им значения 255: в случае превышения присвоить результату значение 255. Записать результат в массив **ImgLinContr**. Построить гистограмму **ImgLinContr**. Отобразить результат контрастирования и его гистограмму.
- 5) Повторить п. 4) для случая нелинейного контрастирования, установив минимальное и максимальное значение таким образом, чтобы они обеспечивали

значение процентиля p = 0.1 %, 0.5 % и 1 %. Записать результаты в файлы **ImgLinContr_p**. Объяснить различия в результатах контрастирования.

6) Выполнить гамма-коррекцию изображения $\mathbf{Img0}$ для $\gamma = 1/1,4,\ 1/1,8$ и 1/2,2, предварительно получив для каждого параметра γ характеристики преобразования (перекодировочные таблицы) $f\gamma[k],\ k=0..255,\ для$ быстрой обработки полутоновых изображений. Визуализировать характеристики преобразования. Записать результаты в изображения $\mathbf{ImgGammaCorr}$. Построить гистограммы и результаты коррекции. Объяснить их различия.

Тема 3

- 1) Заполнить массив **Img0** данными о яркости пикселей полутонового изображения *Lenna*.
- 2) Добавить к пикселям изображения отсчеты аддитивного БГШ с СКО $\sigma = 15$.
 - 3) Реализовать:
 - а) линейный фильтр Гаусса с апертурой 3×3;
 - б) линейный фильтр Гаусса с апертурами 3×1 и 1×3 ;
 - в) линейный фильтр Гаусса с апертурой 5×5;
 - г) линейный Вох-фильтр с апертурой 3×3;
 - д) линейный Box-фильтр с апертурой 5×5.
- 4) Выполнить сравнение результатов фильтрации из п. 3) и визуализировать их. Убедиться в том, что для нелинейных фильтров принцип разделимости не справедлив, сопоставив результаты фильтрации для 3, б) при смене порядка фильтрации.
- 5) Оценить коэффициент подавления шума для каждого типа линейного фильтра а)-д) из п. 3).

Тема 4

- 1) Заполнить массив **Img0** данными о яркости пикселей полутонового изображения *Lenna*.
- 2) Добавить к пикселям изображения отсчеты импульсного шума типа «соль+перец» с вероятностью поражения пикселя 0,1 %.
 - 3) Реализовать:
 - а) нелинейный медианный фильтр с апертурой 3×3;
 - б) нелинейный медианный фильтр с апертурами 3×1 и 1×3;
 - в) нелинейный медианный фильтр с апертурой 5×5;
 - г) адаптивный нелинейный медианный фильтр с апертурой 5×5.
- 4) Выполнить сравнение результатов фильтрации из п. 3) и визуализировать их. Убедиться в том, что для нелинейных фильтров принцип разделимости не справедлив, сопоставив результаты фильтрации для 3, б) при смене порядка фильтрации.

- 5) Оценить коэффициент подавления шума для каждого типа фильтра из п. 3).
- 6) Повторить п. 1) для импульсного шума типа «соль+перец» с вероятностью поражения пикселя 0,5 % и 1%.
- 7) Повторить п. 1) для изображения без шума. Сделать вывод о подавлении фильтром высокочастотной составляющей изображенния.

Тема 5

- 1) Заполнить массив **Img0** данными о яркости пикселей полутонового изображения *Lenna*.
- 2) Реализовать алгоритм выбора порога по Отцу и применить его к изображению **Img0**. Визуализировать результат бинаризации.
- 3) Составить программу для оценки предельной дальности обнаружения на бинарном изображении объекта для критерия Джонсона. Входными параметрами программы должны являться: разрешение камеры, угловые поля зрения, линейные размеры объекта, вероятность правильного обнаружения.
 - 4) Построить зависимости дальности обнаружения от:
 - а) линейных размеров объекта;
 - б) разрешения камеры.

Тема 6

- 1) Загрузить пару изображений видимого (TVi) и ИК (IRi) диапазонов для своего номера варианта i из каталога $Multispectral_2$.
 - 2) Реализовать алгоритм комплексирования по методу:
 - а) среднего арифметического;
 - б) добавления отличий в ВЧ области;
 - в) PCA.
 - 3) Визуализировать результаты комплексирования.
- 4) Загрузить тройки изображений видимого (TVi), коротковолнового ИК (SWIRi) и длинноволнового ИК (SWIRi) диапазонов для своего номера варианта i из каталога $Multispectral_3$.
 - 5) Реализовать алгоритм комплексирования по методу:
 - а) среднего арифметического;
 - б) добавления отличий в ВЧ области;
 - в) PCA.
 - 6) Визуализировать результаты комплексирования.

Составил