ПРИЛОЖЕНИЕ 1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра радиотехнических систем

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине (модулю)

Б1.В.ДВ.03.02 «Средства радиоэлектронного наблюдения»

Направление подготовки

11.03.01 «Радиотехника»

Направленность (профиль) подготовки Радиотехнические системы локации, навигации и телевидения»

> Уровень подготовки бакалавриат

Программа подготовки академический бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – очная, заочная

Критерии оценивания уровня сформированности компетенций в процессе выполнения лабораторных работ и практических занятий:

- 41%-60% правильных ответов соответствует пороговому уровню сформированности компетенции на данном этапе ее формирования;
- 61%-80% правильных ответов соответствует продвинутому уровню сформированности компетенции на данном этапе ее формирования;
- 81%-100% правильных ответов соответствует эталонному уровню сформированности компетенции на данном этапе ее формирования.

Сформированность уровня компетенций не ниже порогового является основанием для допуска обучающегося к промежуточной аттестации по данной дисциплине.

Формой промежуточной аттестации по данной дисциплине является экзамен, оцениваемый по принятой в ФГБОУ ВО «РГРТУ» четырехбалльной системе.

Критерии оценивания промежуточной аттестации представлены в таблице 1.

Таблица 1 - Критерии оценивания промежуточной аттестации (лабораторные и практические занятия, экзамен)

Шкала оценивания	Критерии оценивания
«зачтено»	студент должен: продемонстрировать общее знание
	изучаемого материала; знать основную
	рекомендуемую программой дисциплины учебную
	литературу; уметь строить ответ в соответствии со
	структурой излагаемого вопроса; показать общее
	владение понятийным аппаратом дисциплины; уметь
	устранить допущенные погрешности в ответе на
	теоретические вопросы и/или при выполнении
	практических заданий под руководством
	преподавателя, либо (при неправильном выполнении
	практического задания) по указанию преподавателя
	выполнить другие практические задания того же
	раздела дисциплины.
«не зачтено»	ставится в случае: незнания значительной части
	программного материала; не владения понятийным
	аппаратом дисциплины; существенных ошибок при
	изложении учебного материала; неумения строить
	ответ в соответствии со структурой излагаемого
	вопроса; неумения делать выводы по излагаемому
	материалу. Оценка «не зачтено» также ставится
	студентам, которые не выполнили и защитили
	лабораторные работы и практические занятия,

	~ · · · · ·
	предусмотренные рабочей программой.
	Оценка «не зачтено» также ставится студентам,
	которые в ходе зачета списывали ответы на вопросы
	со шпаргалок или с применением технических
	устройств.
«ОТЛИЧНО»	«Отлично» заслуживает студент, обнаруживший
	всестороннее, систематическое и глубокое знание
	учебно-программного материала, умение свободно
	выполнять задания, предусмотренные программой,
	усвоивший основную и знакомый с дополнительной
	литературой, рекомендованной программой. Как
	правило, оценка «отлично» выставляется студентам,
	усвоившим взаимосвязь основных понятий
	дисциплины в их значении для приобретаемой
	профессии, проявившим творческие способности в
	понимании, изложении и использовании учебно-
	программного материала.
«хорошо»	«Хорошо» заслуживает студент, обнаруживший
-	полное знание учебно-программного материала,
	успешно выполняющий предусмотренные в
	программе задания, усвоивший основную литературу,
	рекомендованную в программе. Как правило, оценка
	«хорошо» выставляется студентам, показавшим
	систематический характер знаний по дисциплине и
	способным к их самостоятельному пополнению и
	обновлению в ходе дальнейшей учебной работы и
	профессиональной деятельности.
«удовлетворительно»	«Удовлетворительно» заслуживает студент,
	обнаруживший знания основного учебно-
	программного материала в объеме, необходимом для
	дальнейшей учебы и предстоящей работы по
	специальности, справляющийся с выполнением
	заданий, предусмотренных программой, знакомый с
	основной литературой, рекомендованной
	программой. Как правило, оценка
	«удовлетворительно» выставляется студентам,
	допустившим погрешности в ответе на экзамене и
	при выполнении экзаменационных заданий, но
	обладающим необходимыми знаниями для их
	устранения под руководством преподавателя.
«не удовлетворительно»	«Неудовлетворительно» выставляется студенту,
мие удовлетворительно»	wite, gobiet bophicabilion bliefabilicion et ydenty,

обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Вопросы для защиты лабораторных работ

- 1. Назовите известные классические методы измерения угловых координат. В чем их основные отличия?
- 2. Перечислите современные методы оценивания пространственного спектра.
- 3. Запишите алгоритм измерения одной угловой координаты фазовым методом, поясните физический смысл фазового метода.
- 4. Какие параметры влияют на точность измерения угловых координат? Как повысить точность измерения?
- 5. Как зависит точность измерения УК от самой измеряемой величины? Какая координата является зависимой и почему?
- 6. В чем заключаются преимущества суммарно-разностных алгоритмов измерения УК?
 - 7. Что такое направляющие косинусы?
- 8. Какое минимальное количество антенных элементов необходимо иметь для измерения двух угловых координат азимута и угла места?
- 9. Назовите причины, обусловившие применение многошкальных интерферометров.
- 10.Объясните, почему при длине базы > 0.5λ возникает проблема неоднозначных измерений.
- 11.Поясните принцип решения проблемы неоднозначных измерений за счет использования нескольких баз (шкал).
- 12. Какие факторы влияют на выбор количества шкал? Какие существуют подходы к выбору оптимальных соотношений между длинами баз в многошкальном измерителе угловой координаты?
- 13. Что такое вероятность аномальной ошибки? Какие параметры влияют на ее величину?
 - 14. Как зависит вероятность аномальной ошибки от величины хи-квадрат?

- 15.Как построить многошкальный измеритель двух угловых координат азимута и угла места?
 - 16. Что такое спектр и спектральная плотность мощности сигнала?
 - 17. Что такое контрольный спектр и контрольная модель?
- 18. Какие параметры входят в одномерную функцию плотности распределения вероятностей нормального закона распределения?
- 19. Какие параметры входят в многомерную функцию плотности распределения вероятностей нормального закона распределения?
- 20. Опишите основные модели сигналов, используемые в задачах спектрального анализа.
- 21.От каких параметров СПМ сигнала и каким образом зависят порядок и коэффициенты формирующего фильтра?
- 22. Дайте определение автокорреляционной последовательности и ее взаимосвязи с автокорреляционной функцией.
- 23. От каких параметров сигнала и каким образом зависят коэффициенты корреляции сигнала?
 - 24. Как определить корреляционные коэффициенты?
 - 25. Какова роль усреднения при определении корреляционной матрицы?
 - 26. Как можно вычислить спектральную плотность мощности процесса?
 - 27. Какова роль усреднения при определении СПМ?
 - 28. Как влияет число отсчетов сигнала на оценку СПМ?
- 29.Из каких соображений следует выбирать объем усреднения для получения СПМ?
- 30.Как связаны параметры спектра собственных значений (число обусловленности) корреляционной матрицы сигнала с СПМ?
- 31. Опишите различия в алгоритмах формирования и форме СПМ односвязанной и многосвязанной марковских последовательностей.
- 32.Объясните зависимости степени узкополосности СПМ и числа обусловленности матрицы.
 - 33. Объясните зависимость СПМ от отношения сигнал/шум.
 - 34. Объясните зависимость СПМ от ширины спектра флуктуаций сигнала.
 - 35. Какие виды непараметрических моделей вам известны?
 - 36. Для чего применяются весовые функции при спектральном анализе?
 - 37. Достоинства и недостатки применения весовых функций.
 - 38.При каких условиях следует применять метод БПФ?
- 39.Как влияет число отсчетов сигнала на оценку СПМ периодограммным методом?
 - 40. Объясните процедуру вычисления СПМ по методу периодограмм.

- 41. Что такое метод модифицированных периодограмм (метод Уэлча)?
- 42. С какой целью применяется взвешивание при вычислении СПМ периодограммным методом?
 - 43. В чем отличие коррелограммного и периодограммного методов?
 - 44. Какие виды непараметрических моделей вам известны?
- 45.В чем отличие спектральных оценок, полученных на основе AP-, СС- и APCC-моделей?
 - 46. В чем состоят достоинства и недостатки применения АРСС-моделей?
 - 47. Из каких соображений выбирается порядок АР-модели?
 - 48. Какова процедура получения АРСС-спектра?
 - 49. Как вычисляются и что характеризуют коэффициенты отражения?

Примеры задач для практических занятий

- 1. Когерентно-импульсная РЛС дальнего обнаружения работает на частоте $f_0=1,3$ ГГц и имеет размер антенны в горизонтальной плоскости $d_a=8$ м, которая вращается с частотой $\Omega=6$ об/мин. Частота следования импульсов $F_{\pi}=500$ Гц. РЛС обеспечивает вероятность правильного обнаружения D=0,9 при вероятности ложной тревоги $F=10^{-5}$. Определите потенциальную точность измерения азимута σ_{α} (в градусах) при пороговом отношении сигна-шум.
- 2. Бортовая импульсно-доплеровская РЛС определяет азимут цели путем фиксации максимума пачки принимаемых импульсов. Вероятность правильного обнаружения D=0,7, вероятность ложной тревоги $F=10^{-6}$. Найдите потенциальную точность измерения азимута σ_{α} (в градусах), если КНД осесимметричной ДНА РЛС G=10000, количество принимаемых с одного углового направления импульсов N=512, а отношение сигнал-шум выше порогового в 15 раз.
- 3. Какова среднеквадратическая погрешность определения азимута σ_{α} , если известно, что его истинное значение с равной вероятностью лежит в диапазоне 85°...90°, отношение сигнал-шум равно пороговому, длина когерентной пачки импульсов N=100, вероятность правильного обнаружения пачки D=0.95 при вероятности ложной тревоги $F=10^{-6}$.
- 4. Определите частоту импульсов когерентной пачки $F_{\rm n}$, для которой при пороговом отношении сигнал-шум обеспечивается погрешность по азимуту $\sigma_{\alpha} = 0.5^{\circ}$, если рабочая частота РЛС $f_0 = 10$ ГГц, ширина антенны $d_{\rm a} = 6$ м,

- скорость вращения антенны $\Omega = 10$ об/мин, вероятность правильного обнаружения пачки D = 0.85 при вероятности ложной тревоги $F = 10^{-5}$.
- 5. Рассчитайте КНД антенны РЛС, если при отношении сигнал-шум q=10 погрешности определения азимута и угла места соответственно равны $\sigma_{\alpha}=1^{\circ}$ и $\sigma_{\beta}=2^{\circ}$.
- 6. Рассчитайте минимально возможную погрешность измерения дальности σ_R РЛС с прямоугольными ЛЧМ-импульсами длительностью $\tau_u = 100$ мкс с девиацией $\Delta f = 10$ МГц, если средняя мощность полезного сигнала одного ЛЧМ-импульса на входе приемника $P_2 = 8 \cdot 10^{-15}$ Вт, коэффициент шума приемника $k_{\rm m} = 4$, шумовая температура антенны $T_0 = 290$ K, а количество импульсов в пачке N = 16.
- 7. Во сколько раз увеличится потенциальная погрешность измерения дальности σ_R когерентно-импульсной РЛС с гауссовскими импульсами при действии заградительной АШП по боковому лепестку ДНА с $k_{6\pi}=0.02$, если мощность полезного сигнала одного импульса $P_2=6.8\cdot 10^{-15}$ Вт, длина пачки N=128, площадь приемной антенны $S_a=2$ м², разрешающая способность по дальности $\delta R=150$ м, произведение постоянной Больцмана на температуру окружающей среды $kT_0=4\cdot 10^{-21}$ Вт/Гц, коэффициент шума приемника $k_{\rm m}=3$, мощность передатчика постановщика АШП $P_{\rm nn}=20$ Вт, КНД антенны постановщика $G_{\rm nn}=100$, полоса подавляемых частот $\Delta f_{\rm nn}=100$ МГц, дальность до постановщика $R_{\rm nn}=250$ км?
- 8. Определите потенциальную погрешность измерения дальности σ_R , если используется ЛЧМ-сигнал длительностью $\tau_u = 200$ мкс с девиацией частоты $\Delta f = 20$ МГц, а отношение сигнал-шум q = 40. Рассчитайте, при каком числе корреляционных каналов по дальности N_R обеспечивается $\sigma_R = 30$ м, если максимальная дальность обнаружения $R_{\text{max}} = 240$ км.
- 9. Рассчитайте потенциальную погрешность измерения дальности σ_R , если РЛС импульсные радиосигналы гауссовской формы длительностью $\tau_{\rm u} = 1$ мкс при отношении сигнал-шум q = 30. Определите N_R , число корреляционных каналов ПО дальности при котором потенциальная точность ухудшается в 3 раза, если дальность действия $R_{\rm max} =$ 75 км.

- 10.Определите коэффициент шума приемного устройства $k_{\rm m}$, если потенциальная погрешность измерения дальности $\sigma_R = 30$ м при длительности импульса с гауссовской огибающей $\tau_{\rm u} = 0.5$ мкс, мощность полезного сигнала $P_{\rm c} = 5 \cdot 10^{-14}$ Вт, а произведение постоянной Больцмана на температуру окружающей среды $kT_0 = 4 \cdot 10^{-21}$ Вт/Гц.
- 11.Во сколько раз увеличится погрешность измерения частоты по сравнению с потенциальной, если для измерений используются прямоугольные радиоимпульсы длительностью $\tau_{\rm H}=100$ мкс и число доплеровских каналов в полосе частот $\Delta F=60$ кГц $N_F=16$? Отношение сигнал-шум q=95.
- 12. Определите число фильтров измерителя доплеровской частоты N_F , при котором в 2,5 раза увеличивается погрешность измерения частоты по сравнению с потенциальной, если сигнал прямоугольный радиоимпульс длительностью $\tau_{\rm u}=100$ мкс, а измерение производится в полосе доплеровских частот $\Delta F=100$ к Γ ц при отношении сигнал-шум q=60.
- 13. Во сколько раз различаются погрешность измерения скорости σ_V и разрешающая способность по скорости δV при использовании для измерений одиночного прямоугольного радиоимпульса и результирующем отношении сигнал-шум $q_{\Sigma}=3$?
- 14. При каком отношении сигнал-шум q предельно достижимая погрешность измерения скорости $\sigma_V = 27.7$ м/с, если для измерений используются прямоугольные радиоимпульсы длительностью $\tau_{\rm u} = 100$ мкс, а рабочая частота РЛС $f_0 = 3$ ГГц? При какой плотности потока мощности Π излучения цели, создаваемой у антенны РЛС, достигается такая погрешность, если коэффициент шума приемника $k_{\rm m} = 5$, произведение постоянной Больцмана на температуру окружающей среды $kT_0 = 4\cdot10^{-21}$ Вт/Гц, а площадь приемной антенны $S_a = 2$ м²?
- 15. Рассчитайте погрешность измерения скорости σ_V , если для однозначного определения скорости цели, движущейся с максимальной скоростью $V=1440~{\rm km/q}$, выбрана рабочая частота РЛС $f_0=15~{\rm \Gamma \Gamma q}$ и используется когерентная пачка из $N=50~{\rm umnyльсов}$, а результирующее отношение сигнал-шум $q_{\Sigma}=1$. Примечание: диапазон изменения частоты Доплера рассчитать как разницу максимальной и минимальной доплеровских частот.
- 16. Рассчитать скорость вращения антенны радиомаяка Ω (об/мин), если

- измерено значение азимута $\alpha = 240^{\circ}$, а между приемом опорного сигнала и моментом ориентации луча диаграммы направленности антенны радиомаяка на объект прошло $\Delta t = 5$ секунд.
- 17. Скорость вращения антенны радиомаяка $\Omega = 5$ об/мин. Какое значение азимута α будет измерено, если между приемом опорного сигнала и моментом ориентации луча диаграммы направленности антенны радиомаяка на объект прошло $\Delta t = 11$ секунд.
- 18. Чему равно измеренное амплитудным радиопеленгатором значение азимута α , если скорость вращения его антенны $\Omega = 10$ об/мин, начальное положение антенны юг-север, а закон изменения огибающей напряжения на выходе линейной части приемника $u(t) = \exp\{-\pi^2(t-2)^2/2,8\}$.
- 19. При каком расстоянии между приемниками фазового радиопеленгатора d (в м) при разности хода волн 90° измеренный пеленг $\alpha = 60^{\circ}$, если рабочая частота пеленгатора $f_0 = 403$ МГц?
- 20. Антенна РЛС представляет собой квадратную эквидистантную решетку, состоящую из $N_{\rm изл}=1600$ излучателей и шириной луча диаграммы направленности $\Delta \phi=3,581^{\circ}$. Найдите угловые координаты цели (угол места и азимут в градусах), если разность хода волн, принимаемых парой вертикально расположенных излучателей, составляет 20 % от длины волны, а разность хода волн, принимаемых парой горизонтально расположенных излучателей, равна нулю.
- Антенна РЛС представляет собой прямоугольную эквидистантную решетку из $N_{\text{изп}}$ = 2000 излучателей; ширина луча диаграммы направленности в азимутальной плоскости $\Delta \phi_{\alpha}$ в 5 раз больше ширины луча в угломестной плоскости $\Delta \varphi_{\rm B}$. При частоте зондирующего сигнала $f_0 = 3$ ГГц коэффициент усиления антенны G = 6283. Найдите угловые координаты цели (угол места и азимут в градусах), если разность фаз, принимаемых парой вертикально расположенных излучателей, составляет $\psi_{\beta}=155,89^{\circ},~a$ парой горизонтально расположенных фаз, принимаемых разность излучателей, равна $\psi_{\alpha} = 45^{\circ}$.
- 22. Определите число излучателей N в эквидистантной квадратной антенной решетке, если при измеренном азимуте $\alpha = 30^{\circ}$ и угле места $\beta = 0^{\circ}$ разность фаз, измеренных между крайними горизонтальными элементами решетки, составляет 5π радиан. Расстояние между соседними излучателями в решетке равно половине длины волны.

- 23. При триангуляции цели пеленгаторами 1 и 2 измерены пеленги $\alpha_1 = 60^\circ$ и $\alpha_2 = 120^\circ$. Найдите расстояние до цели по линии траверза R (в км), если пеленгаторы разнесены на расстояние базы d = 34,64 км.
- 24. Какое расстояние R_2 (в км) будет измерено вторым пеленгатором при триангуляции, если расстояние, измеренное первым пеленгатором, совпадает с расстоянием по линии траверза, база d=40 км, а измеренный вторым пеленгатором угол $\alpha_2=120^{\circ}$?
- 25. Чему равно расстояние (в км) по линии траверза до цели при разнесении пеленгаторов триангуляционной системы на базу d = 50 км, если линии пеленгов пересекаются под прямым углом, а угол, измеренный вторым пеленгатором, в 3 раза больше чем угол, измеренный первым?
- 26. При триангуляции цели пеленгаторами 1 и 2 измерены пеленги $\phi_1 = 120^\circ$ и $\phi_2 = 150^\circ$. Найдите координаты цели на плоскости, если разница расстояний от пеленгаторов до цели составляет $\Delta R = 36,6$ км. Начало системы координат расположено в точке размещения пеленгатора 1, а ось x соединяет точки размещения пеленгаторов и направлена в сторону пеленгатора 2.
- 27. РЛС имеет эквидистантную антенную решетку с линейным размером L = 70 см и работает на частоте 3 ГГц. В направлении нормали к решетке обеспечивается ширина ДНА (по уровню 0,5), равная $[1 + 0,25(N-1)]^{\circ}$, где N-10 номер по списку в журнале. Какой пеленг (в градусах с точностью до второго знака после запятой) будет измерен такой антенной, если разность фаз между соседними элементами решетки равна 30°?

Перечень вопросов для билетов на экзамене

- 1. Задачи средств РЭН.
- 2. Состав аппаратуры средств РЭН.
- 3. Критерии эффективности средств РЭН.
- 4. Принципы оценивания временных и спектральных характеристик принимаемых сигналов.
- 5. Принципы оценивания пространственных и поляризационных характеристик принимаемых сигналов.
- 6. Оценки и их свойства.
- 7. Оптимальное оценивание времени прихода сигнала.
- 8. Оптимальное оценивание частоты сигнала.
- 9. Процессор БПФ.
- 10. Частотный дискриминатор.
- 11. Корреляционный измеритель.

- 12. Цифровой частотомер.
- 13. Цифровой периодомер.
- 14.Схемы кратковременного запоминания частоты.
- 15. Классические алгоритмы спектрального оценивания. Коррелограммный метод.
- 16. Классические алгоритмы спектрального оценивания. Периодограммный метод.
- 17. Весовые окна в спектральном анализе.
- 18. Авторегрессионное спектральное оценивание.
- 19. Спектральное оценивание авторегрессии-скользящего среднего.
- 20. Непараметрические методы спектрального оценивания.
- 21. Радиотепловой контраст. Формулы Рэлея-Джинса и Планка.
- 22. Радиопоглощающие покрытия. Экранирование.
- 23. Линии и поверхности положения. Пеленги. Триангуляция источников излучения на плоскости. Триангуляция источников излучения в пространстве.
- 24. Алгоритмы оценивания направления прихода излучения в антенных решётках.

Составил

к.т.н., доцент кафедры РТС

/ И.С. Холопов /