ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

«Энергоэффективные способы охлаждения мощных электронных приборов и устройств»

Компетенции:

- ПК-1 Способен проводить анализ и выбор перспективных технологических процессов и оборудования производства приборов, устройств и установок электроники и наноэлектроники различного функционального назначения
- ПК-2 Способен формировать новые направления научных исследований и опытно-конструкторских разработок

1. Паспорт фонда оценочных средств по дисциплине

В результате освоения программы магистратуры по дисциплине «Энергоэффективные способы охлаждения мощных электронных приборов и устройств» у выпускника должен быть сформирован широкий спектр знаний, соответствующих компетенциям ПК-1 и ПК-2. Распределение этих знаний по контролируемым разделам дисциплины приведено в следующей таблице.

№ п/п	Контролируемые разделы дисциплины	Код компе- тенции	Оценочное средство
1	2	3	4
1	Введение. Современные тенденции в области развития систем охлаждения РЭА	ПК1, ПК2	Экзамен
2	Принципы построения энергоэффективных систем охлаждения РЭА. Оптимизация геометрии развитых поверхностей теплообмена	ПК1, ПК2	Экзамен
3	Принципы построения энергоэффективных систем охлаждения РЭА. Интенсификация теплоотдачи компонентов РЭА с помощью тепловых труб	ПК1, ПК2	Экзамен
4	Принципы построения энергоэффективных систем охлаждения РЭА. Жидкостно-воздушные системы охлаждения компонентов РЭА	ПК1, ПК2	Экзамен
5	Принципы построения энергоэффективных систем охлаждения РЭА. Оптимизация энергопотребления систем охлаждения источников тепловыделения, функционирующих в импульсном режиме.	ПК1, ПК2	Экзамен
6	Принципы построения энергоэффективных систем охлаждения РЭА. Оптимизация оребрения воздушного радиатора в режиме естественной и вынужденной конвекции	ПК1, ПК2	Экзамен
7	Принципы построения энергоэффективных систем охлаждения РЭА. Термоэлектрические элементы в системах охлаждения	ПК1, ПК2	Экзамен

Лабораторный практикум

№ п/п	Наименование лабораторных работ	Перечень формируемых компетенций
1	Оптимизация оребрения воздушного радиатора в режиме естественной конвекции	ПК1, ПК2
2	Оптимизация оребрения воздушного радиатора в режиме вынужденной конвекции	ПК1, ПК2
3	Оптимизация энергопотребления жид- костно-воздушной системы охлажде- ния	ПК1, ПК2
4	Система охлаждения на основе тепловых труб	ПК1, ПК2

Практические занятия

№ п/п	Тема занятий	Перечень формируемых компетенций
1	Тепловые трубы	ПК1, ПК2
2	Жидкостно-воздушные системы охлаждения	ПК1, ПК2
3	Моделирование процесса стабилизации теплового режима газоразрядного лазера с учетом теплообмена излучением и конвекцией	ПК1, ПК2
4	Построение аналитической модели распределения температуры в вертикальном воздушном радиаторе в режиме естественной конвекции	ПК1, ПК2
5	Интенсификация теплообмена излучением и применение тепловых аккумуляторов в системах охлаждения компонентов РЭА	ПК1, ПК2

Курсовой проект

№ п/п	Тема	Перечень формируемых компетенций
1	«Расчет системы охлаждени устройств электронной техники»	Я ПК1, ПК2

2. Критерии оценивания компетенций

- 1. Уровень усвоения материала, предусмотренного программой.
- 2. Умение анализировать излагаемый материал.
- 3. Умение устанавливать причинно-следственные связи.

- 4. Ответы на вопросы: полнота, аргументированность, убежденность.
- 5. Качество ответа: общая композиция; логичность; эрудиция.
- 6. Использование дополнительной литературы.

3. Шкала оценивания для оформления итогового экзамена по дисциплине

Ответ на экзамене оценивается по 4-х уровневой системе: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». При этом в независимости от уровня усвоения материала оценка неудовлетворительно выставляется в случае, если студент не выполнил лабораторные работы и/или практические задания, предусмотренные учебным графиком.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующие этапы формирования компетенций

При определении уровня экзаменационной оценки следует исходить из общепринятых требований:

- оценки «отлично» заслуживает студент, обнаруживший глубокое знание учебнопрограммного материала, успешно выполнивший все программные задания, усвоивший основную и дополнительную литературу.
- оценки «хорошо» заслуживает студент, выполнивший все программные задания, усвоивший основную литературу и обнаруживший достаточно полное знание учебнопрограммного материала.
- оценки «удовлетворительно» заслуживает студент, справляющийся с выполнением программных заданий, знакомый с основной литературой, обнаруживший знания программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии.
- оценка «неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях программного материала.

5. Типовые контрольные задания или иные материалы

Типовые контрольные задания включают в себя перечень вопросов к итоговому экзамену по дисциплине и перечень вопросов для самостоятельной подготовки студентов.

5.1. Вопросы к экзамену по дисциплине

No	Содержание вопроса	Перечень формиру-	
п.п.		емых компетенций	
1	Современные тенденции в области развития систем охлаждения РЭА	ПК1, ПК2	
2	Оптимизация геометрии развитых поверхностей теплообмена с прямоугольными ребрами	ПК1, ПК2	
3	Оптимизация геометрии развитых поверхностей теплообмена с круглыми ребрами	ПК1, ПК2	
4	Тепловые трубы в системах охлаждения. Основные пре-имущества. Типовые конструкции тепловых труб.	ПК1, ПК2	
5	Гомогенные фитили. Формула падения давления	ПК1, ПК2	
6	Фитили, образованные открытыми канавками. Формула падения давления	ПК1, ПК2	
7	Составные фитили. Формула падения давления	ПК1, ПК2	
8	Перепад давления в паровой фазе в случае несжимаемого течения пара	ПК1, ПК2	

9	Гравитационный напор в тепловой трубе	ПК1, ПК2
10	Основные элементы конструкции жидкостно-	ПК1, ПК2
	воздушных систем охлаждения компонентов РЭА	
11	Система уравнений, описывающих теплопередачу в	ПК1, ПК2
	жидкостно-воздушной системе охлаждения	
12	Применение тепловых аккумуляторов для оптимизации	ПК1, ПК2
	энергопотребления систем охлаждения источников теп-	
	ловыделения, функционирующих в импульсном режиме	
13	Оптимизация оребрения воздушного радиатора в режи-	ПК1, ПК2
	ме естественной конвекции	
14	Оптимизация оребрения воздушного радиатора в режи-	ПК1, ПК2
	ме вынужденной конвекции	
15	Термоэлектрические элементы в системах охлаждения	ПК1, ПК2

Приложение составил к.т.н., доц. кафедры ПЭЛ	 А.А. Фефелов
Заведующий кафедрой «Промышленная электроника»	 С.А. Круглов

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО ФГБОУ ВО "РГРТУ", РГРТУ, Круглов Сергей Александрович, 3аведующий кафедрой ПЭЛ

01.09.25 19:50 (MSK)

Простая подпись