МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Систем автоматизированного проектирования вычислительных средств»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

«Математическое моделирование и визуализация данных»

Направление подготовки 02.04.02 Фундаментальная информатика и информационные технологии

Направленность (профиль) подготовки «Нейросетевые технологии и интеллектуальный анализ данных»

Квалификация выпускника – магистр

Форма обучения – очная

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы – это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель – оценить соответствие знаний, умений и навыков, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Промежуточный контроль по дисциплине осуществляется путем проведения зачета. Форма проведения зачета — ответы на теоретические вопросы. Выполнение заданий на практических занятиях в течение семестра и заданий на самостоятельную работу является обязательным условием для допуска к зачету.

2. ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Наименование оценочного средства
1	Основные понятия и определения. Классификация математических моделей.	УК-1.1	зачет
2	Системный подход, задачи анализа, синтеза	УК-1.2	зачет
3	Линейное и дискретное программирование в задачах моделирования	УК-1.1	зачет
4	Вероятностное (статистическое) моделирование	УК-1.2	зачет
5	Имитационное моделирование в задачах анализа проектных решений	УК-1.2, УК-1.3	зачет
6	Использование программных средств для визуализации данных	УК-1.3	зачет
7	Система визуального моделирования MatLab/Simulink	УК-1.3	зачет

3. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

Вопросы к экзамену по дисциплине (модулю)

- 1. Системный подход и задачи моделирования.
- 2. Классификация моделей
- 3. Основные виды задач математического моделирования
- 4. Математическая постановка задачи линейного программирования
- 5. Преобразование форм задачи линейного программирования
- 6. Базисное решение задачи линейного программирования
- 7. Геометрическая интерпретация задачи линейного программирования

- 8. Симплекс-метод решения задачи линейного программирования и его табличная форма
- 9. Общая характеристика задач дискретного программирования
- 10. Моделирование как метод анализа проектных решений
- 11. Понятие системы массового обслуживания (СМО). Классификация СМО
- 12. Характеристики систем массового обслуживания
- 13. Метод статистических испытаний в компьютерном моделировании
- 14. Генерация случайных чисел, равномерно распределенных в интервале
- (0, 1) Аппаратный способ, табличный способ, метод середины квадрата
- 15. Генерация случайных чисел, равномерно распределенных в интервале (0, 1). Линейный конгруэнтный метод
- 16. Моделирование случайных событий
- 17. Моделирование случайных величин с заданным законом распределения. Метод обратных функций
- 18. Моделирование случайных величин с заданным законом распределения. Метод исключения
- 19. Моделирование случайных величин с заданным законом распределения. Приближенный метод для произвольного закона распределения
- 20. Формирование случайных величин с нормальным законом распределения
- 21. Моделирование случайных процессов
- 22. Понятие имитационного моделирования. Основные элементы имитационных моделей
- 23. Обобщенный алгоритм имитационного моделирования с постоянным приращением модельного времени
- 24. Обобщенный алгоритм событийного моделирования
- 25. Общая характеристика языка моделирования MatLab
- 26. Общая характеристика операторов языка MatLab, написание программ на языке MatLab
- 27. Операторы описания непрерывных динамических объектов на языке MatLab
- 28. Операторы описания дискретных динамических объектов на языке MatLab
- 29. Визуализация результатов моделирования на языке MatLab
- 30. Визуальное программирование в среде MatLab/Simulink
- 31. Составление блок-схем динамических объектов в среде MatLab/Simulink
- 32. Библиотеки объектов в среде MatLab/Simulink
- 33. Визуализация результатов моделирования в среде MatLab/Simulink

Теоретические вопросы для самостоятельной работы

1. Оценки вычислительной сложности алгоритмов решения задач оптимального проектирования.

- 2. Экстремальные числа графов и их применение в алгоритмах решения прикладных задач анализа и синтеза проектных решений.
- 3. Применение методов теории расписаний при оптимальном проектировании.
- 4. Методы решения многокритериальных задач синтеза проектных решений.
 - 5. Методы решения *NP*-полных задач оптимального проектирования.
 - 6. Решение задачи коммивояжера методом ветвей и границ.
- 7. Алгоритмы оптимального проектирования на графовых моделях. Пути, остовные деревья, потоки.
- 8. Метод критического пути и его применение в задачах синтеза и анализа проектных решений.
 - 9. Сетевое планирование и управление.
- 10. Обзор и сравнительный анализ языков моделирования, применяемых в САПР.

Практические задания для самостоятельной работы

- 1. Программная реализация и исследование поисковых алгоритмов решения задач нелинейного программирования.
- 2. Программная реализация и исследование алгоритмов синтеза проектных решения с помощью генетических алгоритмов.
- 3. Программная реализация метода отсечения Гомори для решения задач целочисленного линейного программирования.
- 4. Программная реализация и исследование метода ветвей и границ для решения задачи коммивояжера.
 - 5. Разработка программы для определения экстремальных чисел графов.
- 6. Разработка программы решения задачи целочисленного линейного программирования методом ветвей и границ.
- 7. Разработка программы решения задачи о рюкзаке методом динамического программирования.
- 8. Изучение возможностей современных пакетов прикладных программ для решения задач анализа и синтеза проектных решений. Подготовка практических примеров.
 - 9. Разработка программ для решения задач теории расписаний.
- 10. Разработка демонстрационной программы для графического решения задачи целочисленного линейного программирования.

Оператор ЭДО ООО "Компания "Тензор" ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ ПОДПИСАНО ФГБОУ ВО "РГРТУ", РГРТУ, Корячко Вячеслав Петрович, **07.10.25** 14:09 Простая подпись ЗАВЕДУЮЩИМ Заведующий кафедрой САПР КАФЕДРЫ ПОДПИСАНО ФГБОУ ВО "РГРТУ", РГРТУ, Корячко Вячеслав Петрович, **07.10.25** 14:10 Простая подпись ЗАВЕДУЮЩИМ Заведующий кафедрой САПР (MSK) ВЫПУСКАЮШЕЙ КАФЕДРЫ