МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Общая и экспериментальная физика»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ Б1.В.04 «НАУЧНЫЕ ОСНОВЫ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ»

Направление подготовки 38.03.02 Менеджмент

Направленность (профиль) подготовки «Производственный менеджмент»

Квалификация выпускника – бакалавр

Форма обучения – очно-заочная

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Промежуточный контроль по дисциплине осуществляется проведением зачета. Форма проведения зачета — тестирование и решение расчетной задачи. Решение задачи предоставляется в письменном виде. При необходимости, проводится теоретическая беседа с обучаемым для уточнения оценки.

2. ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия			
1.	Общие сведения о материи, естествознании	цие сведения о материи, естествознании и направлениях развития инновационных				
	технологий. Понятие о состоянии в систем					
	пространства и времени. Законы движения. Формы движения материи и их свойства.					
1.1.	Введение.	ПК-3.1	зачет			
1.2.	Кинематика.	ПК-3.1	зачет			
1.3.	Основные законы классической динамики.	ПК-3.1	зачет			
1.4.	Законы сохранения.	ПК-3.1	зачет			
1.5.	Основы релятивистской механики	ПК-3.1	зачет			
2.	Концепция необратимости и термодинамин	ĸa.				
2.1.	Основы молекулярной физики.	ПК-3.1	зачет			
2.2.	Основы термодинамики.	ПК-3.1	зачет			
2.3.	Элементы неравновесной термодинамики.	ПК-3.1	зачет			
2.4.	Самоорганизация в неравновесных системах.	ПК-3.1	зачет			
3.	Физика полей. Электромагнетизм.					
3.1.	Основы электростатики.	ПК-3.1	зачет			
3.2.	Основы магнетизма.	ПК-3.1	зачет			
3.3.	Явление электромагнитной индукции.	ПК-3.1	зачет			
3.4.	Электромагнитное поле.	ПК-3.1	зачет			
4.	Физика колебательных и волновых процессов.					
4.1.	Механические колебания.	ПК-3.1	зачет			
4.2.	Волны. Электромагнитные волны.	ПК-3.1	зачет			
4.3.	Волновая теория света.	ПК-3.1	зачет			
5.	Микромир и основные концепции некласс современных технологий.	ического естествознания. Концеп	щии развития			
5.1.	Основы квантовой физики.	ПК-3.1	зачет			
5.2.	Элементы квантовой механики	ПК-3.1	зачет			
5.3.	Основы квантовой электроники.	ПК-3.1	зачет			
5.4.	Основы физики элементарных частиц.	ПК-3.1	зачет			

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Описание критериев и шкалы оценивания промежуточной аттестации

а) описание критериев и шкалы оценивания тестирования:

За каждый тестовый вопрос назначается максимально 1 балл в соответствии со следующим правилом:

- 1 балл ответ на тестовый вопрос полностью правильный;
- 0,5 балла отчет на тестовый вопрос частично правильный (выбраны не все правильные варианты, указаны частично верные варианты);
- 0 баллов ответ на тестовый вопрос полностью не верный.
- б) описание критериев и шкалы оценивания решения расчетной задачи:

Шкала оценивания	Критерий
5 баллов	Задача решена верно
(эталонный уровень)	
3 балла	Задача решена верно, но имеются технические неточности в
(продвинутый уровень)	расчетах
1 балла	Задача решена верно, с дополнительными наводящими вопросами
(пороговый уровень)	преподавателя
0 баллов	Задача не решена

На зачем выносятся 20 тестовых вопросов и 2 расчетных задачи. Максимально студент может набрать 30 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «зачтено», «не зачтено».

Шкала оценивания	Критерий		
зачтено	30 – 10 баллов	Обязательным условием является выполнение	
		всех предусмотренных в течении семестра	
		заданий (на лабораторных работах и при	
		самостоятельной работе)	
не зачтено	0 - 9 баллов	Студент не выполнил всех предусмотренных в	
		течении семестра текущих заданий (на	
		лабораторных работах и при самостоятельной	
		работе)	

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация

Коды	Результаты освоения ОПОП	
компетенций	Содержание компетенций	
ПК-3.1	разрабатывает предложения по повышению эффективности деятельности	
	организации (в том числе машиностроительной)	

а) типовые тестовые вопросы закрытого типа:

1. В северном полушарии земли в декабре дни короче, чем в июне, так как...

- а) В декабре ось суточного вращения Земли наклонена так, что Северное полушарие Земли повернуто от Солнца
- **b)** зимой Земля движется быстрее по орбите вокруг Солнца
- с) в декабре ось суточного вращения Земли наклонена севером к Солнцу
- d) зимой Земля движется медленнее по орбите вокруг Солнца
- 2. Два камешка выпущены из рук из одной и той же точки один после другого. Будет ли меняться расстояние между камешками?
 - а) расстояние между камешками будет увеличиваться
 - b) расстояние между камешками останется постоянным
 - с) расстояние между камешками будет уменьшаться
 - d) расстояние между камешками зависит от массы камешков
- 3. Полезная механическая работа отлична от нуля если подъемный кран..
 - а) будет держать груз некоторое время на весу в покое.
 - b) поднимает с земли груз.
 - с) поднимет груз с земли и сразу опустит на землю.
 - d) пронесет груз в горизонтальном направлении на некоторое расстояние.
- 4. Для того, чтобы работа совершалась, необходимо ...
 - а) наличие действующей силы
 - b) наличие перемещения
 - с) наличие действующей силы, перемещения, угол между ними отличен от 900
 - d) движение
 - е) взаимодействия тел или полей
- 5. Гармонические колебания это колебания, при которых колеблющаяся величина изменяется
 - а) только по закону синуса
 - b) только по закону косинуса
 - с) по закону синуса или косинуса
 - d) под действием только внутренних сил
- 6. Течение жидкости называют ламинарным если....
 - а) вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними
 - b) вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости
 - с) скорость жидкости в соседних слоях имеет одно и тоже значение
 - d) жидкость течет без трения о поверхность трубы
- 7. Диффузия происходит быстрее при повышении температуры вещества, потому что
 - а) тело при нагревании расширяется
 - b) увеличивается взаимодействие частиц.
 - с) увеличивается скорость движения частиц.
 - d) уменьшается скорость движения частиц
- 8. В идеальном газе взаимное притяжение между молекулами
 - а) велико
 - **b**) пренебрежимо мало
 - с) мало на малых и велико на больших расстояниях
 - d) велико на малых и мало на больших расстояниях
- 9. Теплопроводностью называется:
 - а) установление термодинамического равновесия;
 - b) возникновение внутреннего трения между слоями жидкости (газа);
 - с) проникновения двух или нескольких соприкасающихся веществ друг в друга;
 - d) перенос тепловой энергии.
- 10. Тепловое движение молекул прекращается при температуре
 - a) 273°C
 - b) 0 °C
 - c) 0 K
 - d) -273 K
 - e) -273°C
- 11. Внутренняя энергия монеты увеличится, если её...
 - а) нагреть
 - b) заставить двигаться с большей скоростью

d) опустить в воду той же температуры
12. Тела, в которых электрический заряд может перемещаться по всему его объему, являются
а) полупроводниками
в) проводниками
с) диэлектриками
13. Два разноименно заряженных тела, отстоящих друг от друга на некотором расстоянии R, будут
а) притягиваться
в) отталкиваться
с) покоиться
14. Электрическим током называется
а) движение электрических зарядов одного знака
в) движение электрических зарядов разного знака
с) упорядоченное движение зарядов разного знака
d) упорядоченное движение зарядов одного знака
15. Величина силы тока определяется как
а) количество заряда, протекающего через единичное сечение проводника в единицу времени
в) количество заряда, протекающего через единицу объема проводника в единицу времени
с) количество заряда, протекающего через проводник в единицу времени
d) отношение заряда ко времени
16. Источниками магнитного поля являются
а) движущиеся магнитные заряды
в) движущиеся электрические заряды.
с) магнитные моменты ядер и электронов
d) круговые токи зарядов в атомах и молекулах
17. Единица измерения магнитной индукции
а) Тл; тесла
b) A; ампер
с) Вт; ватт
d) B; вольт
б) типовые тестовые вопросы открытого типа:
1. Для повышения или понижения напряжения переменного тока применяются
(трансформаторы)
2. Закон Ома для однородного участка цепи в интегральной форме определяется формулой (I = U / R)
 Единицей измерения силы тока является
4. Устройство, обладающее способностью при малых размерах накапливать значительные п
величине заряды, называются(конденсаторами)
5. Частица, имеющая наименьший отрицательный заряд, называется(электрон)
6. Закон Архимеда утверждает, что на тело, погруженное в жидкость или газ, действует
выталкивающая сила, равная(весу вытесненной жидкости)
7. Автором закона всемирного тяготения считается(Ньютон)
8. Механикой Галилея-Ньютона называется(классическая механика)
9. Ускорение характеризует изменение за единицу времени (скорости)
10. Линия в пространстве, которую описывает точка при движении, называется
(траекторией)
в) типовые расчетные задачи:

с) поднять над поверхностью земли

- 1. Движение точки по прямой задано уравнением $x = At + Bt^2$, где A = 2 м/с, B = -0.5 м/с². Определить среднюю путевую скорость < v > движения точки в интервале времени от $t_1 = 1$ с до $t_2 = 3$ с. Ответ: 0,5 м/с.
- 2. Маховик в виде цилиндра массой 5 кг и радиусом 20 см за 4 с от начала равноускоренного вращения достиг частоты 10 об/с. Найти момент сил, действующих на маховик.

Ответ: 1,57 Н:м.

3. При каком давлении происходило изобарное расширение азота, если на увеличение его объема на 12 л было затрачено количество теплоты, равное 21 кДж?

Ответ: 500 кПа.

4. Расстояние между зарядами +5 нКл и -5 нКл равно 10 см. Определить напряженность электрического поля, созданного этими зарядами в точке, находящейся на расстоянии 5 см от первого и 10 см от второго заряда.

Ответ: 17.43 кВ/м.

5. По двум бесконечно длинным прямым параллельным проводам текут токи $I_1 = 5$ А и $I_2 = 10$ А в одном направлении. Расстояние d между проводами равно 10 см. Вычислить магнитную индукцию B в точке, удаленной от обоих проводов на одинаковое расстояние r = 15 см.

Ответ: 19 мкТл.

6. Найти период физического маятника, представляющего собой однородный диск радиусом 10 см, вращающийся вокруг горизонтальной оси, проходящей на расстоянии 5 см от его центра.

Ответ: 0,63 с.

7. На тонкую пленку (n = 1,5), находящуюся в воздухе, падает нормально пучок лучей белого света. При какой наименьшей толщине d пленки отраженный свет с длиной волны $\lambda = 0,6$ мкм окажется максимально усиленным в результате интерференции?

Ответ: 0,1 мкм.

8. Степень поляризации частично поляризованного света P=0,25. Найти отношение интенсивности естественной составляющей этого света к интенсивности поляризованной составляющей.

Ответ: 3.

9. Заряженная частица, ускоренная разностью потенциалов 200 В, имеет длину волны де Бройля 22,7 пм. Найдите массу частицы, если ее заряд по модулю равен заряду электрона.

Ответ: 1.3·10⁻²⁹ кг.

10. Момент импульса электрона в ионе гелия He^+ $L=2,11\cdot 10$ -34 Дж·с. Найти радиус орбиты, на которой находится электрон.

Ответ: 1,1·10⁻¹⁰ м.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Дубков Михаил Викторович, Заведующий кафедрой ОиЭФ

18.06.25 09:42 (MSK)

Простая подпись