ПРИЛОЖЕНИЕ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Радиотехнических устройств»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДИСЦИПЛИНЫ «Беспроводные технологии передачи данных»

Направление подготовки 11.03.01 Радиотехника

Направленность (профиль) подготовки «Беспроводные технологии в информационных системах»

Уровень подготовки **Бакалавриат**

Квалификация выпускника – бакалавр

Формы обучения – очная

Рязань 2025 г

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено». Количество лабораторных работ по каждому модулю определено графиком, утвержденным заведующим кафедрой.

Промежуточный контроль по дисциплине осуществляется проведением экзамена. Форма проведения экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый может составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки и т.п.

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

«Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями и давшим законченные и логичные ответы на дополнительные вопросы преподавателя по темам вопросов экзаменационного билета.

«Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не предоставляют логичные и законченные ответы на вопросы экзаменационного билета, а также дополнительные вопросы преподавателя по темам вопросов экзаменационного билета, что ставит под сомнение способность данных студентов приступить в дальнейшем к профессиональной деятельности по окончании вуза.

Оценка «зачтено» по лабораторной работе выставляется студенту, который прочно усвоил предусмотренный программный материал, правильно и аргументировано ответил на вопросы, показал систематизированные знания в теме вопроса, сделал логичные и аргументированные выводы по результатам выполненной лабораторной работы.

Оценка «не зачтено» по лабораторной работе выставляется студенту, который в ответах на вопросы допустил существенные ошибки, не сумел ответить на дополнительные вопросы, предложенные преподавателем, или не сформулировал аргументированный ответ в грамотной форме, не предоставил логичные и аргументированные выводы по результатам выполненной лабораторной работы.

Типовые контрольные задания или иные материалы

Вопросы к экзамену

- 1. Беспроводные сети передачи информации. Основные понятия.
- 2. Организации стандартизации в области телекоммуникаций.
- 3. Эталонная модель взаимодействия открытых систем. Описание уровней.
- 4. Общие принципы построения систем радиосвязи. Варианты топологий.
- 5. Логическая архитектура абонентских радиотерминалов.
- 6. Логическая архитектура базовых станций.
- 7. Логическая архитектура локальных сетей.
- 8. Логическая архитектура сетей подвижной радиосвязи.
- 9. Взаимоувязанные процедуры обеспечения мобильности в сетях подвижной радиосвязи.
- 10. Регламент радиосвязи МСЭ. Основные сведения. Таблица распределения частот.
- 11. Регламент радиосвязи РФ. Условные обозначения видов модуляции.
- 12. Определение информации. Радиочастотный ресурс как носитель информации.
- 13. Модели радиосигналов. Временная непрерывная модель канала связи. Представление узкополосного сигнала в ортонормированном базисе.

- 14. Модели радиосигналов. Узкополосный и широкополосный канал связи. Представление узкополосного сигнала в ортонормированном базисе.
- 15. Модели радиосигналов. Комплексная дискретная модель канала связи. Представление узкополосного гауссовского процесса в ортонормированном базисе.
- 16. Виды цифровой модуляции. Представление в виде созвездий.
- 17. Общие принципы построения демодуляторов сигналов с цифровой модуляцией.
- 18. Представление смеси сигнала и аддитивного шума в виде диаграммы рассеяния. Условная функция плотности вероятности.
- 19. Оптимальное оценивание переданного символа. Условная функция плотности вероятности. Правило Байеса и эквивалентные правила сравнения метрик.
- 20. Структурные схемы демодуляторов сигналов с модуляцией BPSK, QPSK, QAM.
- 21. Общие принципы кодирования. Определение систематических и несистематических кодов, скорости кода, избыточности кода, синдрома. Разрешенные и запрещенные кодовые комбинации.
- 22. Основы теории конечных полей. Простое и расширенное конечное поле, порождающий полином.
- 23. Код Хэмминга (7,4). Возможности исправления ошибок. Коды, исправляющие пачки ошибок.
- 24. Циклические коды. Полиномиальное представление. Построение циклического кода и принцип обнаружения ошибок.
- 25. Коды Рида-Соломона. Полиномиальное представление. Построение и принцип обнаружения ошибок.
- 26. Сверточные коды. Представление кодера в виде векторов связей, структурная схема. Представление в виде диаграммы состояний, древовидной диаграммы, решетчатой диаграммы.
- 27. Алгоритм сверточного декодирования Витерби. Мягкая и жесткая схема принятия решений.
- 28. Турбо-коды. Перемежение. Выкалывание и адаптивная скорость кода.

Перечень лабораторных работ и вопросов для контроля

№ п/п	Наименование лабораторной работы
1	Исследование цифровых видов модуляции
2	Исследование влияния канала связи на качество демодуляции сигнала с цифровыми видами модуляции
3	Исследование помехоустойчивых кодов
4	Исследование сверточного кодирования и декодирования

№ работы	Название лабораторной работы и вопросы для контроля	Шифр
1	 Исследование цифровых видов модуляции Математические модели каналов связи, взаимосвязь между ними, допущения при переходе от одной модели к другой. Преимущества комплексной модели канала связи, графическое представление цифровых методов модуляции. Помехи в канале связи, их математические модели. Характеристики качества связи, системный компромисс между полосой сигнала и вероятностью ошибки. Определение необходимой полосы модулированного сигнала, контрольной полосы, полосы по уровню. Определение внеполосных излучений. Назначение маски огибающей внеполосных излучений. Чем вызвана необходимость ограничивать внеполосные излучения? Виды цифровой модуляции. Понятие спектральной эффективности цифровой модуляции. Назначение сглаживающего фильтра на передающей стороне до преобразования частот вверх. В каких видах модуляции он применяется? Факторы, определяющие ширину необходимой полосы сигнала с цифровой модуляцией. 	4385
2	 Исследование влияния канала связи на качество демодуляции сигнала с цифровыми видами модуляции Помехи в канале связи, их математические модели, влияние помех на качество оценивания передаваемых символов. Источники аддитивного шума, математические модели, допущения при переходе от одной модели к другой. Влияние аддитивного шума на принятый сигнал. Условные функции плотности вероятности принятого сигнала. Источники замираний и многолучевости, математические модели. Влияние замираний и многолучевости на принятый сигнал. Влияние луча прямой видимости на принятый сигнал. Временной профиль канала. Искажение созвездия сигнала при прохождении через канал. Диаграмма рассеяния, влияние аддитивного шума, замираний и многолучевости на ее вид. Выводы о необходимых видах обработки принятого сигнала. Оптимальные критерии оценивания передаваемых символов. Правило Байеса, оптимальные алгоритмы и метрики оценивания. Необходимость кода Грея при цифровой модуляции, его применение в М-РSK и QAM. Обобщенная структурная схема демодулятора сигнала с амплитудно-фазовой манипуляцией. 	4385
3	Исследование помехоустойчивых кодов 1. Как разрешается компромисс «достоверность или полоса пропускания», который может быть достигнут при использовании	4385

коррекции ошибок?

- 2. Как разрешается компромисс «мощность или полоса пропускания», который может быть достигнут при использовании коррекции ошибок?
- 3. Как разрешается компромисс «скорость передачи данных или полоса пропускания», который может быть достигнут при использовании коррекции ошибок?
- 4. Как разрешается компромисс «пропускная способность или полоса пропускания», который может быть достигнут при использовании коррекции ошибок?
- 5. В системах связи реального времени за получаемую с помощью избыточности эффективность приходится платить полосой пропускания. Чем приходится жертвовать за получаемую эффективность кодирования в системах связи модельного времени ?
- 6. В системах связи реального времени увеличение избыточности означает повышение скорости передачи сигналов, меньшую энергию на канальный символ и больше ошибок на выходе демодулятора. Объясните, как на фоне такого ухудшения характеристик достигается эффективность кодирования.
- 7. Почему эффективность традиционных кодов коррекции ошибок снижается при низких значениях отношения сигнал-шум?
- 8. Опишите процессы проверки с использованием синдромов, обнаружения ошибки и ее исправления.
- 9. Каким образом свойства гауссовского канала связи используются при моделировании процессов кодирования и декодирования?
- 10. Опишите принцип блочного кодирования и декодирования, вид матрицы генератора систематического блочного кода, а также вид проверочной матрицы.
- 11. В чем заключаются особенности циклических кодов как разновидности блочных кодов?

4 Исследование сверточного кодирования и декодирования

- 1. Приведите схему сверточного кодера и опишите процесс кодирования на примере кода, описываемого восьмеричными векторами =5, =7.
- 2. Принцип декодирования по методу максимального правдоподобия.
- 3. Мягкое и жесткое принятие решений.
- 4. Принцип сверточного декодирования Витерби.
- 5. Возможности сверточного кода в коррекции ошибок.
- 6. Что называется просветом сверточного кода?
- 7. Как влияет разрядность мягкого решения на вероятность ошибки декодирования?
- 8. Как влияет разрядность мягкого решения на сложность реализации декодера?

График выполнения лабораторных работ размещен в лаборатории.

Составил доцент кафедры РТУ к.т.н.

А.В. Ксендзов

Оператор ЭДО ООО "Компания "Тензор"

4385