МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. В.Ф. УТКИНА

Кафедра «Автоматизация информационных и технологических процессов»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Дисциплины

Б1.О.22 ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Направление 15.03.04 «Автоматизация технологических процессов и производств»

Квалификация выпускника – бакалавр Формы обучения – очная, заочная Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на лабораторных работах. При оценивании результатов освоения лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

При изучении дисциплины предусмотрено выполнение курсового проекта и его защита.

Промежуточный контроль по дисциплине осуществляется проведением зачета и экзамена.

Форма проведения зачета – устный ответ по утвержденным вопросам, сформулированным с учетом содержания учебной дисциплины. После ответа обучаемого производится их оценка преподавателем и, при необходимости, задаются дополнительные вопросы для уточнения знаний и выставления «зачтено – не зачтено».

Форма проведения экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. После подготовки обучаемого к ответу на вопросы экзаменационного билета, проводится теоретическая беседа преподавателя с обучаемым для уточнения экзаменационной оценки.

Паспорт фонда оценочных средств по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её	Вид, метод, форма оценочного мероприятия
		части)	
1	Основные понятия. Способы	ОПК-1, ОПК-4,	Зачет
	построения линейных систем	ОПК-6, ОПК-13,	
	автоматического управления (САУ).	ОПК-14	

2	Основные способы представления и	ОПК-1, ОПК-4,	Зачет
	описания САУ.	ОПК-6, ОПК-13,	
		ОПК-14	
3	Устойчивость САУ.	ОПК-1, ОПК-4,	Зачет
		ОПК-6, ОПК-13,	
		ОПК-14	
4	Точность САУ в установившемся	ОПК-1, ОПК-4,	экзамен
	режиме.	ОПК-6, ОПК-13,	
		ОПК-14	
5	Динамические показатели качества.	ОПК-1, ОПК-4,	экзамен
	Синтез САУ с заданными	ОПК-6, ОПК-13,	
	показателями качества.	ОПК-14	
6	Нелинейные системы.	ОПК-1, ОПК-4,	экзамен
		ОПК-6, ОПК-13,	
		ОПК-14	
7	Анализ и синтез нелинейных САУ.	ОПК-1, ОПК-4,	экзамен
		ОПК-6, ОПК-13,	
		ОПК-14	
8	Импульсные системы	ОПК-1, ОПК-4,	экзамен
	автоматического управления.	ОПК-6, ОПК-13,	
		ОПК-14	

Шкала оценки сформированности компетенций

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме экзамена, используется пятибалльная оценочная шкала:

«Отлично» заслуживает обучающийся, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется обучающимся, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает обучающийся, обнаруживший полное знание учебно-программного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется обучающимся, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает обучающийся, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется обучающимся, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится обучающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме теоретического зачета, используется оценочная шкала «зачтено – не зачетено»:

Оценка «зачтено» выставляется обучающемуся, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание.

Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении лабораторных работ, систематическая активная работа на практических занятиях.

Оценка «не зачтено» выставляется обучающемуся, который не справился с контрольным заданием на зачет, в ответах на вопросы контрольного перечня допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях элементов курса и использования предметной терминологии у обучающегося нет.

2. Тематика курсового проекта: «Анализ и синтез САУ»

Примерное содержание пояснительной записки.

- 1. Введение
- 2. Исходные данные.
- 3. Найти передаточную функцию разомкнутой и замкнутой систем, передаточную функцию замкнутой системы по ошибке и по возмущению.
- 4. Оценить точность отработки заданных входных воздействий (численно) и возмущающих воздействий (в общем виде) для исходных значений коэффициентов передач.
 - 5. Оценить устойчивость системы по критерию Гурвица и логарифмическому критерию.
- 6. Провести синтез системы, гарантирующий заданную ошибку от входящего воздействия при использовании пропорционального регулятора. Оценить точность обработки возмущающего воздействия при к=к_{жел}.
- 7. Синтезировать желаемую ЛАЧХ $L_{\text{ж.теор.}}$, гарантирующую заданные динамические характеристики системы $t_{_{\rm D}}$ и σ .
- 8. Промоделировать желаемую ЛАЧХ на пакете, при возможном изменении параметров ЛАЧХ, получить требуемые характеристики t_n и σ %, построить полученную $L_{\text{ж.мод.}}$.
- 9. По $L_{\text{ж.мод.}}$, исходной ЛАЧХ при $k=k_{\text{ж}}$ построить ЛАЧХ корректирующего устройства, разбить её на ЛАЧХ возможных типовых КУ, выбрать наилучший вариант реализации.

- 10. Осуществить расчёт выбранных КУ, используя эквивалентные варианты (последовательные, параллельные, с обратной связью).
- 11. Выбрать регулятор (астатизм), обеспечивающий отработку без ошибки возмущающих воздействий. Оценить точность отработки входных воздействий при выбранном регуляторе.
- 12. Провести синтез и промоделировать желаемую ЛАЧХ с выбранным регулятором, гарантирующей t_p и σ %, уточнить вид регулятора (И, ИЛИ, ПИД) его коэффициент передачи, постоянные времени и, если необходимо, дополнительных КУ.
 - 13. Заключение.
 - 14. Литература.

Примерные варианты заданий на курсовой проект

- 1. Система стабилизации положения платформы.
- 2. Следящая система привода дисковода.
- 3. Система моделирования функции, заданной с помощью записи.
- 4. Суммирующее устройство электронно-механического типа.
- 5. Система автоматической установки масштабных коэффициентов в аналоговом вычислительном комплексе.
- 6. Система стабилизации напряжения генератора постоянного тока.

Перечень лабораторных работ

Лабораторная работа 1.

Исследование статических и динамических характеристик типовых звеньев.

Лабораторная работа 2.

Исследование устойчивости САУ при увеличении коэффициента передачи разомкнутой системы, постоянных времени.

Лабораторная работа 3.

Исследование точности отработки входных и возмущающих воздействий при статическом и астатическом регуляторе.

Лабораторная работа 4.

Коррекция динамических показателей последовательными корректирующими устройствами.

Лабораторная работа 5.

Исследование релейной системы, с разными статистическими характеристиками регуляторов.

Лабораторная работа 6.

Исследование оптимальных по быстродействию систем (программный синтез).

Лабораторная работа 7.

Исследование устойчивости импульсных систем.

Лабораторная работа 8.

Исследование цифровой системы с цифровой коррекцией.

Типовые контрольные задания или иные материалы

Код контролируемой компетенции: ОПК-1, ОПК-4, ОПК-6, ОПК-13, ОПК-14

ОПК-1

- 1. Для чего создают математическую модель системы?
- 2. Алгоритм исследования динамики объекта:
 - 1. Описать техническое устройство и его части и свойства и составить математическую модель и выдвинуть необходимые допущения
 - 2. Записать дифференциальные уравнения, описывающие поведение модели и решить уравнения относительно выходных переменных.
 - 3. Провести анализ результатов. При необходимости скорректировать математическую модель.
 - 4. Все перечисленные выше пункты.
- 3. Принцип преобразования Лапласа.
- 4. На основании чего получают дифференциальные уравнения, описывающие динамику физического объекта;
- 5. Графическое изображение комплексного числа.
- 6. Динамические характеристики технических систем.
- 7. Статические характеристики технических систем.
- 8. Типовые входные воздействия описываются следующими функциями:
 - 1. ступенчатой, импульсной
 - 2. импульсной
 - 3. гармонической, импульсной
 - 4. ступенчатой, импульсной, гармонической
- 9. Начертите, как выглядит гармоническая функция.
- 10. Объясните понятие «единичная ступенчатая функция».
- 11. Объясните понятие «единичный импульс».
- 12. Реакция системы на единичный ступенчатый сигнал называется:
 - 1. переходная функция
 - 2. ступенчатая функция
 - 3. единичная функция
 - 4. первая функция
- 13. Реакция системы на единичный импульс называется:
 - 1. весовая функция
 - 2. мерная функция
 - 3. единичная функция
 - 4. импульсная функция
- 14. Понятие передаточной функции.
- 15. Понятие решетчатой функции.
- 16. Методика расчета передаточной функции.
- 17. Перечислите несколько названий типовых звеньев автоматики.
- 18. Уравнение инерционного звена, если х(t)- входная, а у(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T\frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T\frac{dx}{dt} + x(t);$$

$$4 - T\frac{dy}{dt} = x(t).$$

19. Уравнение безынерционного звена, если х(t)- входная, а у(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T\frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T\frac{dx}{dt} + x(t);$$

$$4 - T\frac{dy}{dt} = x(t).$$

20. Передаточная функция безынерционного звена:

$$1 - W(p) = k;$$

$$2 - W(p) = \frac{k}{Tp + 1};$$

$$3 - W(p) = \frac{k(Tp + 1)}{p};$$

$$4 - W(p) = Tp + 1.$$

21. Передаточная функция инерционного звена:

$$1 - W(p) = k;$$

$$2 - W(p) = \frac{k}{Tp + 1};$$

$$3 - W(p) = \frac{k(Tp + 1)}{p};$$

$$4 - W(p) = Tp + 1.$$

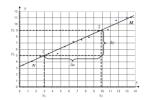
22. Передаточная функция идеального интегрирующего звена:

$$\begin{split} 1 - W(p) &= \frac{k}{p}; \\ 2 - W(p) &= \frac{k(T_1 p + 1)}{(T_2 p + 1)}; \\ 3 - W(p) &= Tp; \\ 4 - W(p) &= \frac{Tp}{Tp + 1}. \end{split}$$

23. Передаточная функция идеального дифференциального звена:

$$1 - W(p) = \frac{k}{p};$$

$$2 - W(p) = \frac{k(T_1 p + 1)}{(T_2 p + 1)};$$


$$3 - W(p) = Tp;$$

$$4 - W(p) = \frac{Tp}{Tp + 1}.$$

- 24. Что такое структурная схема САУ?
- 25. Основные типы соединений звеньев:
 - 1. последовательное, параллельное и с обратными связями
 - 2. последовательное, параллельное
 - 3. последовательное и с обратными связями
 - 4. параллельное и с обратными связями
- 26. Как рассчитывается общая передаточная функция для последовательного соединения звеньев?
- 27. Как рассчитывается общая передаточная функция для параллельного соединения звеньев?
- 28. Дана отрицательная обратная связь. Тогда:
 - 1. выходная величина регулятора вычитается из входной величины объекта
 - 2. выходная величина регулятора складывается с входной величиной объекта
 - 3. выходная величина регулятора не учитывается
 - 4. нет правильного ответа
- 29. Система с положительной обратной связью имеет передаточную функцию:

$$W(p) = \frac{W_{o\delta}(p)}{1 - W_{o\delta}(p) \cdot W_p(p)}.$$

- 2. 1
- 3. -1
- 4. Нет правильного ответа.
- 30. Виды частотных характеристик.
- 31. Понятие логарифмических частотных характеристик.
- 32. Понятие годографа.
- 33. Принцип построения ЛАЧХ.
- 34. Перечислите некоторые виды звеньев автоматики.
- 35. Какое звено называют интегральным:
 - 1. Интегральным называется такое звено, выходная величина которого пропорциональна интегралу по времени от входной величины.
 - 2. Звено описывается следующим дифференциальным уравнением.
 - 3. Звено, выходная величина которого пропорциональна скорости изменения входной величины.
 - 4. Звено, которое на выходе воспроизводит входной сигнал без искажений, однако с некоторым постоянным запаздыванием.
- 36. Напишите второй закон Ньютона в дифференциальном виде.
- 37. Напишите закон Ома в дифференциальном виде.
- 38. Построить график зависимости у=0,58х+3,2.
- 39. Написать управление прямой согласно графику.

- 40. Начертите последовательное соединение звеньев.
- 41. Начертите параллельное соединение звеньев.
- 42. Начертите два последовательных звена, охваченных обратной связью.
- 43. Даны три звена с передаточными функциями W_1 , W_2 , W_3 , соединенные последовательно. Найдите их эквивалентную передаточную функцию.
- 44. Даны три звена с передаточными функциями W1, W2, W3, соединенные параллельно. Найдите их эквивалентную передаточную функцию.
- 45. Выполнить преобразование Лапласа

$$\frac{d^2x}{dt^2} + x = 0$$

- 46. Получить передаточную функцию для уравнения $\frac{d^2x}{dt^2} + x = 0$ 47. Определить постоячить
- 47. Определить постоянную времени апериодического звена с коэффициентом передачи K=10, если частота сопряжения его ЛАЧХ равна $lg\omega$ =2:
 - 1. 1
 - 2. 0,1
 - 3. 0,01
 - 4. 0
- 48. Найти передаточную функцию последовательно соединенных звеньев с передаточными функциями 8р и 0,01/(p+1):
 - 1. $0.01/(8p^2+p)$
 - 2. 0.08p/(p+1)
 - 3. 0.08p(p+1)
 - 4. 0.08p+1

- 49. Изобразите логарифмическую частотную характеристику для безынерционного звена:
 - 1.

2.

4.

50. Эквивалентная передаточная функция параллельного соединения звеньев равна:

$$1.Wээк(p) = \prod_{i=1}^{n} W_i(p);$$

$$2W$$
ээк $(p) = \sum_{i=1}^{n} W_i(p);$

$$3W$$
ээк $(p) = \frac{W_{np}(p)}{1 \pm W_{np}(p)W_{oc}(p)}$

4Нет правильного ответа

- 1. Понятие автоматического управления.
- 2. Понятие объекта управления.
- 3. Классификация воздействий на объект управления.
- 4. Перечислите основные задачи теории автоматического управления.
- 5. Что может представлять собой система управления с точки зрения информационных технологий?
- 6. Какие элементы можно включить в систему управления:
 - 1. Объект управления
 - 2. Регулятор
 - 3. Датчики
 - 4. Все перечисленные выше пункты
- 7. Приведете пример системы стабилизации.
- 8. Приведите пример системы регулирования.
- 9. Какие условные обозначения могут встречаться в схемах автоматического управления:
 - 1. УУ, ОУ, ЗУ, Р
 - 2. УК, КУ, КУ, Р
 - 3. УУУ, ОУУ, ЗУУ, Р
 - 4. УУ, ОУ, ЗУ, РУ
- 10. Дайте определение функциональной схемы САУ.
- 11. Дайте определений структурной схемы САУ.
- 12. Охарактеризуйте возмущающее воздействие.
- 13. Охарактеризуйте управляющее воздействие.
- 14. Типовые воздействия (можно выбрать несколько ответов):
 - 1. Единичное ступенчатое
 - 2. Дельта-функция
 - 3. Гармоническое воздействие
 - 4. Воздействие, изменяющееся в постоянной скоростью или ускорением.

- 15. К каким воздействиям относятся помехи:
 - 1. Внешние
 - 2. Внутренние
 - 3. Первичные
 - 4. Актуальные
- 16. Опишите работу регулятора.
- 17. Опишите систему непрерывного действия.
- 18. Опишите систему дискретного действия.
- 19. Опишите нелинейную систему.
- 20. Для чего создают математическую модель системы?
- 21. Алгоритм исследования динамики объекта:
 - 1. Описать техническое устройство и его части и свойства и составить математическую модель и выдвинуть необходимые допущения
 - 2. Записать дифференциальные уравнения, описывающие поведение модели и решить уравнения относительно выходных переменных.
 - 3. Провести анализ результатов. При необходимости скорректировать математическую модель.
 - 4. Все перечисленные выше пункты.
- 22. На основании чего получают дифференциальные уравнения, описывающие динамику физического объекта?
- 23. Динамические характеристики технических систем.
- 24. Статические характеристики технических систем.
- 25. Типовые входные воздействия описываются следующими функциями:
 - 1. ступенчатой, импульсной
 - 2. импульсной
 - 3. гармонической, импульсной
 - 4. ступенчатой, импульсной, гармонической
- 26. Начертите, как выглядит гармоническая функция.
- 27. Единичная ступенчатая функция.
- 28. Единичная ступенчатая функция.
- 29. Реакция системы на единичный ступенчатый сигнал называется:
 - 1. переходная функция
 - 2. ступенчатая функция
 - 3. единичная функция
 - 4. первая функция
- 30. Реакция системы на единичный импульс называется:
 - 1. весовая функция
 - 2. мерная функция
 - 3. единичная функция
 - 4. импульсная функция
- 31. Понятие передаточной функции.
- 32. Методика расчета передаточной функции.
- 33. Перечислите несколько названий типовых звеньев автоматики.
- 34. Уравнение инерционного звена, если х(t)- входная, а у(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T\frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T\frac{dx}{dt} + x(t);$$

$$4 - T\frac{dy}{dt} = x(t).$$

35. Уравнение безынерционного звена, если х(t)- входная, а у(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T \frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T \frac{dx}{dt} + x(t);$$

$$4 - T \frac{dy}{dt} = x(t).$$

$$W(p) = \frac{(p+1)(0.5p+1)}{(p+1)^2}$$

36. Передаточная функция имеет вид многочлен.

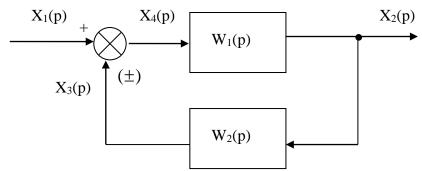
 $W(p) = \frac{(p+1)(0.5p+1)}{p(p+1)^2}$. Определите характеристический

$$W(p) = \frac{p(2p+1)}{(p+1)(0.5p+1)}$$

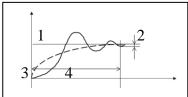
37. Определите значения нулей передаточной функции $W(p) = \frac{p(2p+1)}{(p+1)(0,5p+1)}$ 38. Какое звено имеет чести

38. Какое звено имеет наименьшее время регулирования

$$W_1(p) = \frac{6}{p+1}$$


$$W_2(p) = \frac{11}{0.2 p + 1}$$

1.
$$W_{1}(p) = \frac{6}{p+1}$$


$$W_{2}(p) = \frac{11}{0.2p+1}$$
2.
$$W_{2}(p) = \frac{11}{0.1p+1}$$

4.
$$W_2(p) = \frac{11}{0.3p+1}$$

39. Определите передаточную функцию замкнутой системы $W(p) = X_2(p)/X_1(p)$.

40. Отметьте участок на графике, который показывает переходной процесс:

- 41. Пусть допустимая статическая ошибка воспроизведения скачка задания не должна превышать значения 0,02. Для этого необходимо иметь полный коэффициент усиления системы не менее
 - 1. 49
 - 2. 0,02
 - 3. 2
- 42. Напишите эквивалентную передаточную функцию.

a)
$$Y_1$$
 Y_0
 $W_2(\rho)$
 Y_2
 $W_3(\rho)$
 Y_1
 Y_2
 Y_2
 Y_3
 Y_4
 Y_4
 Y_5
 Y_6
 Y_7
 Y_8
 Y_8
 Y_8

43. Напишите эквивалентную передаточную функцию.

$$Y_0$$
 ΔY
 $W_{0,c}(\rho)$
 Y
 $W_{0,c}(\rho)$

44. Начертите или опишите перенос сумматора влево

$$\begin{array}{c|c}
 & Z \\
\hline
 & V_0 \\
\hline
 & W_1 \\
\hline
 & W_2 \\
\hline
 & W_2 \\
\hline
 & V_2 \\
\hline
 &$$

45. Поменяйте узлы местами

46. Поменяйте сумматоры местами.

$$\xrightarrow{\gamma_1} \xrightarrow{Z_2} \xrightarrow{Z_1} \xrightarrow{\gamma}$$

47. Модуль амплитудно-частотная функция вычисляется по формуле

$$A(\omega) = |W(j\omega)| = \sqrt{U^2(\omega) + V^2(\omega)},$$

Вычислите функцию, если действительная часть равна 0,3, мнимая -0,4.

48. Согласно таблицы 1 построить АЧХ.

Таблица 1.

1 000111124				
ω, c ⁻¹	A (ω)	φ (ω)	$U(\omega)$	$V(\omega)$
0	1,00	0	1,0000	0
1	0,99	-5°40′	0,9900	-0,10
5	0,89	-26°30′	0,8000	-0,48
10	0,71	-45°	0,5000	-0,50
20	0,50	-63°30′	0,2000	-0,40
40	0,25	-76°	0,0600	-0,23
100	0,10	-84°10′	0,0100	-0,10
1000	0,01	-89°20′	0,0001	-0,01
∞	0	-90°	0	0

- 49. Согласно таблицы 1 построить ФЧХ.
- 50. Согласно таблицы 1 построить АФЧХ.

- 1. Какие физические системы могут быть описаны дифференциальными уравнениями?
- 2. Опишите последовательность исследования динамики объекта:
 - 1. Описать техническое устройство и его части и свойства и составить математическую модель и выдвинуть необходимые допущения
 - 2. Записать дифференциальные уравнения, описывающие поведение модели и решить уравнения относительно выходных переменных.
 - 3. Провести анализ результатов. При необходимости скорректировать математическую модель.
 - 4. Все перечисленные выше пункты.
- 3. Опишите принцип преобразования Лапласа.
- 4. Как можно получить дифференциальное уравнение, описывающие динамику физического объекта.
- 5. Понятие комплексного числа.
- 6. Что значит дифференциальное уравнение первого порядка?
- 7. Типовые входные воздействия описываются следующими функциями:

- 1. ступенчатой, импульсной
- 2. импульсной
- 3. гармонической, импульсной
- 4. ступенчатой, импульсной, гармонической
- 8. Начертите, как выглядит гармоническая функция.
- 9. Опишите единичную ступенчатую функцию.
- 10. Реакция системы на единичный ступенчатый сигнал называется:
 - 1. переходная функция
 - 2. ступенчатая функция
 - 3. единичная функция
 - 4. первая функция
- 11. Реакция системы на единичный импульс называется:
 - 1.весовая функция
 - 2.мерная функция
 - 3.единичная функция
 - 4.импульсная функция
- 12. Понятие передаточной функции.
- 13. Понятие решетчатой функции.
- 14. Перечислите несколько названий типовых звеньев автоматики.
- 15. Уравнение инерционного звена, если х(t)- входная, а у(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T\frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T\frac{dx}{dt} + x(t);$$

$$4 - T\frac{dy}{dt} = x(t).$$

16. Уравнение безынерционного звена, если x(t)- входная, а y(t)- выходная величины:

$$1 - y(t) = kx(t);$$

$$2 - T\frac{dy}{dt} + y(t) = x(t);$$

$$3 - y(t) = T\frac{dx}{dt} + x(t);$$

$$4 - T\frac{dy}{dt} = x(t).$$

17. Передаточная функция безынерционного звена:

$$1-W(p) = k;$$

$$2-W(p) = \frac{k}{Tp+1};$$

$$3-W(p) = \frac{k(Tp+1)}{p};$$

$$4-W(p) = Tp+1.$$

18. Передаточная функция инерционного звена:

$$1-W(p) = k;$$

$$2-W(p) = \frac{k}{Tp+1};$$

$$3-W(p) = \frac{k(Tp+1)}{p};$$

$$4-W(p) = Tp+1.$$

19. Передаточная функция идеального интегрирующего звена:

$$1 - W(p) = \frac{k}{p};$$

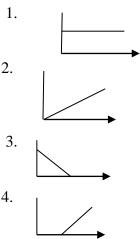
$$2 - W(p) = \frac{k(T_1 p + 1)}{(T_2 p + 1)};$$

$$3 - W(p) = Tp;$$

$$4 - W(p) = \frac{Tp}{Tp + 1}.$$

20. Передаточная функция идеального дифференциального звена:

$$\begin{aligned} 1 - W(p) &= \frac{k}{p}; \\ 2 - W(p) &= \frac{k(T_1 p + 1)}{(T_2 p + 1)} \\ 3 - W(p) &= Tp; \\ 4 - W(p) &= \frac{Tp}{Tp + 1}. \end{aligned}$$


- 21. Что такое звено в структурной схеме САУ?
- 22. Основные типы соединений звеньев:
 - 1. последовательное, параллельное и с обратными связями
 - 2.последовательное, параллельное
 - 3.последовательное и с обратными связями
 - 4. параллельное и с обратными связями
- 23. Начертите последовательное соединения звеньев в структурной схеме САУ.
- 24. Начертите параллельное соединение звеньев в структурной схеме САУ.
- 25. Дана отрицательная обратная связь. Тогда:
 - 1. выходная величина регулятора вычитается из входной величины объекта
 - 2. выходная величина регулятора складывается с входной величиной объекта
 - 3.выходная величина регулятора не учитывается
 - 4.нет правильного ответа
- 26. Система с положительной обратной связью имеет передаточную функцию:

1.
$$1^{W(p) = \frac{W_{o\delta}(p)}{1 - W_{o\delta}(p) \cdot W_p(p)}}$$

- 2. $W(p)=W_{o\delta}(p)$
- 3. $W(p)=1/W_{o\delta}(p)$
- 4. Нет правильного ответа.
- 27. Опишите зависимость амплитудно-частотной характеристики.
- 28. Опишите зависимость фазо-частотной характеристики.
- 29. Кривая, соединяющая концы вектора переменной величины (скорости, ускорения, силы), отложенного в разные моменты времени от одной точки, называется:
 - 1. Годограф.
 - 2. Вектор.
 - 3. Отрезок.
 - 4. Луч.
- 30. Как выглядит комплексная координатная плоскость?
- 31. Что значит усилительное звено автоматики?
- 32. Какое звено называют интегральным:
 - 1. Интегральным называется такое звено, выходная величина которого пропорциональна интегралу по времени от входной величины.
 - 2. Звено описывается следующим дифференциальным уравнением.
 - 3. Звено, выходная величина которого пропорциональна скорости изменения входной величины.
 - 4. Звено, которое на выходе воспроизводит входной сигнал без искажений, однако с некоторым постоянным запаздыванием.
- 33. Звено, в котором выходная величина воспроизводит без искажений и запаздываний входную величину, называется:
 - 1. Безынерционным.
 - 2. Инерционным.
 - 3. Передаточным.
 - 4. Холостым.
- 34. Передаточная функция может быть определена по формуле:
 - 1. $W(p)=W_{BMX}/W_{BXOJ}$.
 - 2. $W(p)=W_{BMX} \cdot W_{BXOJ.}$

- 3. $W(p)=W_{BMX}+W_{BXOZ}$
- 4. $W(p)=W_{BMX}-W_{BXOJI}$
- 35. Звенья в САУ могут соединяться в виде обратной связи. Какая она может быть:
 - 1. Положительная и отрицательная.
 - 2. Положительная.
 - 3. Отрицательная.
 - 4. Прямая.
- 36. Постройте график зависимости $y=2x^2$.
- 37. Напишите уравнение прямой зависимости силы упругости пружины от удлинения, если коэффициент жесткости равен 100 Н/м.
- 38. Начертите последовательное соединение трех звеньев.
- 39. Начертите параллельное соединение двух звеньев и к ним добавьте одно звено последовательно.
- 40. Начертите звено, охваченное положительной обратной связью.
- 41. Даны два звена с передаточными функциями W₁, W₂, соединенные последовательно. Найдите эквивалентную передаточную функцию.
- 42. Даны два звена с передаточными функциями W₁, W₂, соединенные параллельно. Найдите их эквивалентную передаточную функцию.

- 43. Получить передаточную функцию для уравнения $\frac{d^2x}{dt^2} + x = 0$ 44. Найти передоссить 1 44. Найти передаточную функцию последовательно соединенных звеньев с передаточными функциями 8р и 0,01/(р+1):
 - 1. $0.01/(8p^2+p)$
 - 2. 0.08p/(p+1)
 - 3. 0.08p(p+1)
 - 4. 0.08p+1
- 45. Изобразите логарифмическую частотную характеристику для безынерционного звена:

- 46.3венья САУ соединены последовательно и имеют передаточные функции W_1 = k_1 р и $W_2=k_2/(Tp+1)$. Найдите эквивалентную передаточную функцию, если $k_1=0.25$, $k_2=0.1$, T=0.64.
- 47. Звенья САУ соединены параллельно и имеют передаточные функции W_1 = k_1 p и $W_2=k_2/p$. Найдите эквивалентную передаточную функцию, если $k_1=0,2, k_2=0,3$.
 - 1. $(0.2p^2+0.3)/p$.
 - 2. (0,2p+0,3)/p.
 - 3. $0.2p^2+0.3$.
 - 4. $0.2p^2+0.3/p$.
- 48. Начертите структурную схему линейной системы с единичной положительной обратной связью, сумматором и одним звеном с передаточной функцией W.

- 49. Звенья САУ соединены параллельно и имеют передаточные функции $W_1 = k_1 p$ и $W_2=k_2/(Tp+1)$. Начертите структурную схему.
- 50. Звенья САУ соединены через положительную обратную связь и имеют передаточные функции $W_1=k_1p$ и $W_2=k_2/(Tp+1)$. Начертите структурную схему.

- 1. Понятие объекта управления.
- 2. Классификация воздействий на объект управления.
- 3. Что такое структурная схема САУ?
- 4. Основные типы соединений звеньев:
 - 1. последовательное, параллельное и с обратными связями
 - 2. последовательное, параллельное
 - 3. последовательное и с обратными связями
 - 4. параллельное и с обратными связями
- 5. Как рассчитывается общая передаточная функция для последовательного соединения звеньев?
- 6. Как рассчитывается общая передаточная функция для параллельного соединения звеньев?
- 7. Дана отрицательная обратная связь. Тогда:
 - 1. выходная величина регулятора вычитается из входной величины объекта
 - 2. выходная величина регулятора складывается с входной величиной объекта
 - 3. выходная величина регулятора не учитывается
 - 4. нет правильного ответа
- 8. Система с положительной обратной связью имеет передаточную функцию:

$$W(p) = \frac{W_{o\delta}(p)}{1 - W_{o\delta}(p) \cdot W_p(p)}.$$
 2. 1

- 3. -1
- 5. Нет правильного ответа.
- 9. Виды частотных характеристик.
- 10. Понятие логарифмических частотных характеристик.
- 11. Принцип построения ЛАЧХ.
- 12. Перечислите некоторые виды звеньев автоматики.
- 13. Какое звено называют интегральным:
 - 1. Интегральным называется такое звено, выходная величина которого пропорциональна интегралу по времени от входной величины.
 - 2. Звено описывается следующим дифференциальным уравнением.
 - 3. Звено, выходная величина которого пропорциональна скорости изменения входной величины.
 - 4. Звено, которое на выходе воспроизводит входной сигнал без искажений, однако с некоторым постоянным запаздыванием.
- 14. Приведите правила преобразования структурных схем.
- 15. Понятие звена в структурной схеме автоматического управления.
- 16. Опишите принцип обратной связи в системе управления.
- 17. Опишите принцип управления по возмущению.
- 18. Охарактеризуйте статические характеристики САУ.
- 19. Охарактеризуйте динамические характеристики САУ.
- 20. В астатической системе по отношению к управляемому воздействию, при воздействии, стремящемся к установившемуся значению, ошибка стремится:
 - 1. K 0
 - 2. К бесконечности
 - 3. К минимуму
 - 4. К максимуму
- 21. Что такое переходной процесс в САУ?

- 22. Что должна показывать математическая модель для САУ?
- 23. Какое математическое преобразование используется для определения передаточной функции по дифференциальному уравнению?
- 24. Как по известной передаточной функции W(p) определяется переходная характеристика?
- 25. Как по известной передаточной функции W(p) определяется весовая функция?
- 26. Как по известной весовой функции w(t) определить переходную характеристику?
- 27. Как формально определяется сигнал «единичный скачок»:
 - 1. При времени больше нуля равен1
 - 2. При времени равном нулю равент1
 - 3. Всегда равен 1
 - 4. Нет правильного ответа
- 28. Что может включать в себя разомкнутая САУ?
- 29. Опишите объект управления в САУ.
- 30. Опишите измерительное устройство в САУ.
- 31. Опишите задающее устройство в САУ.
- 32. Что означает устойчивость в САУ?
- 33. Причины неустойчивости САУ:
 - 1. Неверно работает обратная связь
 - 2. Инерционность элементов контура
 - 3. Инерционность элементов контура, неверно работает обратная связь
 - 4. Нет правильного ответа
- 34. Что значит «система автоматического управления находится на границе устойчивости»?
- 35. Опишите критерий устойчивости САУ по Гурвицу.
- 36. Даны частотная передаточная функция: $W(j\omega) = k$ и амплитудно-частотная функция: $A(\omega) = k$, Найти логарифмические частотные характеристики:

1.

$$L(\omega) = 20 \lg A(\omega) = 20 \lg k;$$

 $\varphi(\omega) = arctgV(\omega)/U(\omega) = 0.$

 $L(\omega) = 20\lg A(\omega) = k;$

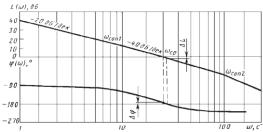
$$\varphi(\omega) = arctgV(\omega)/U(\omega) = 0.$$

3.
$$L(\omega) = 20 \lg A(\omega) = 20 \lg k$$
;

$$\varphi(\omega) = arctgV(\omega)/U(\omega) = \pi$$
.

4.
$$L(\omega) = 20 \lg A(\omega) = 0$$
;

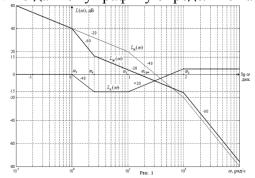
$$\varphi(\omega) = arctgV(\omega)/U(\omega) = 0.$$

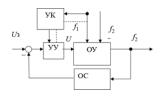

37. Используя критерий Гурвица, определить, устойчива ли САУ, описанная характеристическим уравнением третьего порядка:

$$a_0p^3 + a_1p^2 + a_2p + a_3 = 0,$$

где
$$a_0 = 18$$
; $a_1 = 0.3$; $a_2 = 14$; $a_3 = 1$.

- 1. Не устойчива.
- 2. Устойчива.
- 3. Решение задачи не существует.
- 4. Критерий Гурвица не подходит для данной задачи.
 - 38. Начертите схематично амплитудно-фазовую характеристику разомкнутых устойчивой системы.


39. Чему равна вторая сопрягающая частота на приведенной ниже зависимости.


- 1. 2
- 2. 0
- 3. 100
- 4. 10
- 40. Начертить структурную схему линейной системы с единичной положительной обратной связью, сумматором и одним звеном с передаточной функцией W.
- 41. Опишите работу системы по данному рисунку.

- 42. Если САУ в замкнутом состоянии устойчива, то:
 - 1. На частоте среза ЛФХ располагается выше линии π
 - 2. На частоте среза Л ΦX располагается ниже линии π
 - 3. На частоте среза ЛФХ идет по нулю
 - 4. На частоте среза ЛΦХ идет линии π
- 43. Дана передаточная функция $W(p) = \frac{10}{0.1p+1}$. Определите коэффициент усиления.
 - $W(p) = \frac{10}{0.1}$
- 44. Дана передаточная функция $w(p) = \frac{1}{0,1p+1}$. Определите постоянную времени.
- 45. Изобразите ЛАЧХ передаточной функции W=k.
- 46. По данному графику определите частоту среза.

47. Опишите работу данной схемы с перечислением входящих элементов.

- 48. Начертите последовательное соединения двух звеньев и напишите эквивалентную передаточную функцию.
- 49. Начертите параллельное соединения двух звеньев и напишите эквивалентную передаточную функцию.
- 50. Модуль амплитудно-частотная функция вычисляется по формуле

$$A(\omega) = |W(j\omega)| = \sqrt{U^2(\omega) + V^2(\omega)},$$

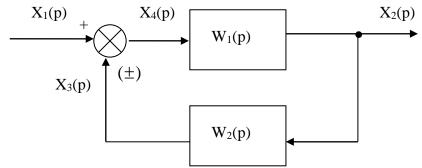
Вычислите модуль функции, если действительная часть равна 0,3, мнимая – 0,4.

- 1. Какие существуют критерии устойчивости:
 - 1.по Гурвицу, Михайлову, Найквисту, частотные
 - 2.по Гурвицу, Михайлову, Найквисту
 - Зпо Гурвицу, Михайлову
 - 4. частотные
- 2. Что такое запас устойчивости САУ по фазе?
- 3. Основные показатели процесса управления:
 - 1. Статическое отклонение, время регулирования, максимальное значение управляемой величины
 - 2. время регулирования, максимальное значение управляемой величины
 - 3. Статическое отклонение, время регулирования
 - 4. время регулирования
- 4. Что значит установившийся режим работы САУ?
- 5. Понятие точности отработки воздействий в САУ.
- 6. Что нужно сделать, что уменьшить установившуюся ошибку:
 - 1. Увеличить коэффициент усиления разомкнутой системы
 - 2. Увеличить обратную связь
 - 3. Уменьшить количество звеньев в САУ
 - 4. Нет правильного ответа
- 7. Расшифруйте понятие П-регулятора.
- 8. Расшифруйте понятие И-регулятора.
- 9. Расшифруйте понятие Д-регулятора.
- 10. Опишите оценку качества регулирования в САУ.
- 11. Назначение синтеза САУ.
- 12. Как можно осуществить коррекцию динамических свойств САУ:
 - 1. Последовательное включение корректирующих устройство в основную цепь
 - 2. Включение интегрирующего звена
 - 3. Последовательное включение корректирующих устройство в обратную связь
 - 4. Все перечисленные выше пункты
- 13. Опишите нелинейные САУ.
- 14. Показатели нелинейности САУ:
 - 1. Симметрия, гладкость, однозначность и неоднозначность
 - 2. Симметрия, гладкость, однозначность
 - 3. Симметрия, гладкость
 - 4. Симметрия
- 15. Отметьте все виды нелинейных звеньев в САУ:
 - 1. Релейные
 - 2. С кусочно-линейной характеристикой
 - 3. С криволинейной характеристикой
 - 4. Все выше перечисленные пункты
- 16. Опишите общие моменты составления уравнений для нелинейных САУ.
- 17. Подход к устойчивости нелинейных САУ по Ляпунову:
 - 1. В положении равновесия система имеет минимум потенциальной энергии
 - 2. В положении равновесия система имеет максимум потенциальной энергии
 - 3. В положении равновесия система имеет ноль по потенциальной энергии
 - 4. В положении равновесия система имеет минимум кинетической энергии
- 18. Что такое дискретная САУ?
- 19. Опишите реле по принципу «открыто-закрыто».

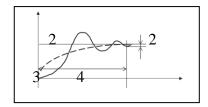
- 20. Как определяется логарифмическая амплитудно-частотная характеристика?
- 21. В каких единицах измеряется наклон ЛАЧХ?
- 22. При каких корнях характеристического уравнения замкнутая система автоматического регулирования устойчива?
- 23. Критерий Гурвица относится к алгебраическим или частотным критериям устойчивости?
- 24. Как обозначается суммирующее устройство в структурной схеме САУ?
- 25. Опишите алгоритм построения структурной схемы САУ.
- 26. Что значит разомкнутая САУ?
- 27. Какие величины могут содержать дифференциальные уравнения для САУ?
- 28. Опишите входные воздействия в САУ.
- 29. Какие величины могут в ходить в передаточную функцию?
- 30. Приведите пример из техники с САУ.
- 31. Осуществляются ли переносы некоторых звеньев и элементов в структурной схеме?
- 32. Какие бывают частотные характеристики в САУ:
 - 1. амплитудно-фазовая
 - 2. фазо-частотная, амплитудно-фазовая
 - 3. амплитудно-частотная, амплитудно-фазовая
 - 4. амплитудно-частотная, фазо-частотная, амплитудно-фазовая
- 33. Безынерционное звено W(p)=k. Найти $A\Phi X$:
 - 1. $W(j\omega)=k$,
 - 2. $W(i\omega)=1$,
 - 3. $W(j\omega)=k+1$,
 - 4. $W(j\omega)=k-1$.
- 34. Безынерционное звено W(p)=k. Найти AЧX:
 - 1. $A(\omega)=k$,
 - 2. $A(\omega)=1$,
 - 3. $A(\omega)=k+1$,
 - 4. $A(\omega)=k-1$.
- 35. Безынерционное звено W(p)=k. Найти Φ ЧХ:
 - 1. $\varphi(\omega)=0$.
 - 2. $\varphi(\omega)=1$.
 - 3. $\varphi(\omega)=\pi$.
 - 4. $\varphi(\omega) = -\pi$.

$$W(p) = \frac{(p+1)(0.5p+1)}{p(p+1)^2}$$
 . Определите характеристический

- 36. Передаточная функция имеет вид многочлен.
- 37. Определите значения нулей передаточной функции $W(p) = \frac{p(2p+1)}{(p+1)(0.5p+1)}$.
- 38. Какое звено имеет наименьшее время регулирования


1.
$$W_1(p) = \frac{6}{p+1}$$

$$W_2(p) = \frac{11}{0.2p+1}$$


$$W_2(p) = \frac{11}{0.1p+1}$$

$$4. W_2(p) = \frac{11}{0.3p+1}$$

39. Определите передаточную функцию замкнутой системы $W(p) = X_2(p)/X_1(p)$.

40. Отметьте участок на графике, который показывает переходной процесс:

- 41. Пусть допустимая статическая ошибка воспроизведения скачка задания не должна превышать значения 0,02. Для этого необходимо иметь полный коэффициент усиления системы не менее
 - 1. 49
 - 2. 0,02
 - 3. 2
 - 4. 100
- 42. Напишите эквивалентную передаточную функцию.

a)
$$W_1(\rho)$$
 Y_1 $W_2(\rho)$ Y_2 Y_2 Y_3 Y_4 Y_5 Y_6 Y_7 Y_8 Y

43. Напишите эквивалентную передаточную функцию.

$$V_0$$
 ΔY
 $W_{0,c}(\rho)$
 V
 $W_{0,c}(\rho)$

44. Начертите или опишите перенос сумматора влево

45. Поменяйте узлы местами

46. Поменяйте сумматоры местами.

$$\xrightarrow{\gamma_1} \stackrel{\downarrow Z_2}{ } \xrightarrow{\downarrow Z_1} \xrightarrow{\gamma}$$

47. Модуль амплитудно-частотная функция вычисляется по формуле

$$A(\omega) = |W(j\omega)| = \sqrt{U^2(\omega) + V^2(\omega)},$$

Вычислите функцию, если действительная часть равна 0,3, мнимая – 0,4.

48. Согласно таблицы 1 построить АЧХ.

Таблица 1.

Тиолпц				
ω, c ⁻¹	$A(\omega)$	φ (ω)	$U(\omega)$	$V(\omega)$
0	1,00	0	1,0000	0
1	0,99	-5°40′	0,9900	-0,10
5	0,89	-26°30′	0,8000	-0,48
10	0,71	-45°	0,5000	-0,50
20	0,50	-63°30′	0,2000	-0,40
40	0,25	-76°	0,0600	-0,23
100	0,10	-84°10′	0,0100	-0,10
1000	0,01	-89°20′	0,0001	-0,01
∞	0	-90°	0	0

- 49. Согласно таблицы 1 построить ФЧХ.
- 50. Согласно таблицы 1 построить $A\Phi$ ЧX.

		Оператор ЭДО ООО "Компа	ания "Тензор"
ДОКУМЕНТ ПОДПИ	САН ЭЛЕКТРОННОЙ ПОДПИСЬЮ	оператор эдо обо полис	anum rensop
ПОДПИСАНО ЗАВЕДУЮЩИМ КАФЕДРЫ	ФГБОУ ВО "РГРТУ", РГРТУ, Ленков Михаил Владимирович, Заведующий кафедрой АИТП	03.07.25 15:43 (MSK)	Простая подпись
ПОДПИСАНО ЗАВЕДУЮЩИМ ВЫПУСКАЮЩЕЙ КАФЕДРЫ	ФГБОУ ВО "РГРТУ", РГРТУ, Ленков Михаил Владимирович, Заведующий кафедрой АИТП	03.07.25 15:44 (MSK)	Простая подпись