МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Экономика, менеджмент и организация производства»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ ФТД.04 «ЦИФРОВАЯ ФАБРИКА»

Направление подготовки 38.04.02 Менеджмент

Направленность (профиль) подготовки «Производственный менеджмент»

Квалификация выпускника – магистр

Форма обучения – заочная

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы – это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель – оценить соответствие знаний, умений и владений, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Промежуточный контроль по дисциплине осуществляется путем проведения зачета. Форма проведения зачета — тестирование и выполнение практического задания. При необходимости, проводится теоретическая беседа с обучаемым для уточнения оценки.

2. ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Контролируемые разделы (темы)	Код контролируемой	Наименование	
дисциплины (результаты по разделам)	компетенции (или её части)	оценочного средства	
Тема 1. Цифровая экономика	ПК-1.2	Зачет	
Тема 2. Концепция Фабрик Будущего	ПК-1.2	Зачет	
Тема 3. Технологии цифровой фабрики	ПК-1.2	Зачет	

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Описание критериев и шкалы оценивания промежуточной аттестации

а) описание критериев и шкалы оценивания тестирования:

За каждый вопрос назначается максимально 2 балла в соответствии со следующим правилом:

- 2 балла ответ на тестовый вопрос полностью правильный;
- 1 балл отчет на тестовый вопрос частично правильный (выбраны не все правильные варианты, указаны частично верные варианты);
- 0 баллов ответ на тестовый вопрос полностью не верный.
- б) описание критериев и шкалы оценивания практических заданий:

Шкала оценивания	Критерий
5 баллов	Задание выполнено верно
3 балла	Задание выполнено верно, но имеются неточности в ответе
1 балл	Задание выполнено верно, с дополнительными наводящими
0 5	вопросами преподавателя
0 баллов	Задание не выполнено

На зачет выносятся 10 тестовых вопросов и 1 практическое задание. Максимально студент может набрать 25 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «зачтено», «не зачтено».

Шкала оценивания	Критерий			
Зачтено	20 – 25 баллов	Выполнены все практические задания в течение		
(не ниже порогового уровня)		семестра		
Не зачтено	0 – 19 баллов	Выполнены не все практические задания в течение		
		семестра		

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация

Код и наименование	Код и наименование индикатора		
компетенции	достижения компетенции		
ПК-1 Способен осуществлять	ПК-1.2 Разрабатывает стратегические планы, программы		
стратегическое управление	развития и целевые программы организационной и		
процессами организационной и	технологической модернизации производственной		
технологической модернизации	деятельности организации (в том числе машиностроительной)		
производственной деятельности			
организации (в том числе			
машиностроительной)			

а) типовые тестовые вопросы:

- 1. Какой процент профессий может полностью исчезнуть из-за автоматизации?
 - a) 51%
 - б) +5%
 - в) 15%
 - г) 80%
- 2. Аналитики Gartner ежегодно выпускают отчёты о технологических трендах. Из предсказаний ниже, три взяты из их отчёта, а одно мы придумали. Какое?
 - a) К 2022 году интернет вещей снизит расходы обычных людей и компаний на один триллион долларов в год
 - б) +В 2021 году приложений и устройств с использованием ИИ станет в два раза больше, чем обычных
 - в) В 2020 году обычные люди будут общаться с ботами чаще, чем с супругами
 - г) В 2020 году 100 миллионов человек будут покупать товары в дополненной реальности
- 3. Мы живём в мире третьей индустриальной революции, но скоро должна произойти четвёртая. Выберите технологию, которая считается её частью.
 - а) Промышленный термоядерный синтез
 - б) Роботы на производстве
 - в) Механизация производства
 - г) +Интернет вещей
- 4. Какая страна больше всех готова к цифровой экономике?
 - а) Япония
 - б) США
 - в) Китай
 - г) +Сингапур
- 5. Выберите город, в котором широкомасштабно используется концепция интернета вещей.
 - а) Сингапур
 - б) Москва
 - в) +Барселона
 - г) Нью-Йорк
- 6. Особенностью четвертой промышленной революции является:
 - а) ориентация на человека
 - б) движение к дегуманизации
 - в) искусственный интеллект и умные взаимосвязанные машины

- г) вытеснение из производства фактора труда.
- 7. Глобальный характер четвертой промышленной революции связан:
 - а) с охватом всех стран и народов;
 - б) со стиранием временных и пространственных границ в движении капитала;
 - в) с развитием сетевой информационной экономики
 - г) с уменьшением индивидуализации потребностей человека
- 8. При переходе к цифровой экономике:
 - а) растет производительность капитала и труда
 - б) труд вытесняется цифровым капиталом и искусственным интеллектом
 - в) расширяется рынок капитала и сужается рынок труда
- 9. В результате цифровой трансформации прибыль компаний:
 - а) а) стремительно растет
 - б) б) стремительно падает
 - в) в) остается неизменной в долгосрочном плане.
- 10. Выберите факторы, которыми обусловлена необходимость технологий быстрого прототипирования:
 - а) сокращение периода от разработки продукции до внедрения в производство;
 - б) сокращение издержек на разработку;
 - в) индивидуализация производства;
 - г) замена ручного труда на машинный;
- 11. Что из перечисленного не входит в Топ-3 факторов конкурентоспособности компаний по данным опроса компании Aberdeen Group?
 - а) Сильный коллектив технических специалистов
 - б) Оригинальное техническое решение
 - в) Сильные R&D подразделения
 - г) Высокая степень автоматизации на предприятии
- 12. Эффектами от применения цифровых фабрик являются (выберите несколько правильных ответов):
 - а) сокращение числа технологий производства
 - б) сокращение переделок и производственных отходов
 - в) сокращение срока вывода продуктов на рынок
- 13. Составными частями Фабрик Будущего являются:
 - а) Цифровая, «Умная», Виртуальная фабрики
 - б) Цифровая, Производственная, Виртуальная, Сервисная фабрики
 - в) Цифровая, Производственная, Сервисная фабрики
 - г) «Умная», Виртуальная, Производственная, Цифровая фабрики
 - д) Нет ответа
- 14. Построение Цифровой фабрики требует (выберите несколько правильных ответов):
 - а) наличия испытательного полигона технологий
 - б) наличия цифрового плана технологий
 - в) наличие цифровой платформы
- 15. Цифровая фабрика ориентирована:
 - а) на создание цифровых продуктов
 - б) на проектирование и производство
 - в) на «цифровизацию» производства на стадии опытного образца и мелкой серии
- 16. Системы автоматизированного проектирования это:
 - а) программный комплекс, предназначенный для создания чертежей, конструкторской и/или технологической документации и/или 3D моделей обеспечивающую автоматизацию процесса проектирования;
 - б) программный комплекс, предназначенный только для создания 3D моделей;
 - в) программный комплекс, предназначенный только для создания чертежей, конструкторской и/или технологической документации;
- 17. Выберите функции САМ-систем:
 - а) подготовка управляющих программ для станков с ЧПУ;
 - б) подготовки технологической документации;
 - в) оптимизация технологического цикла изготовления изделий на станках с ЧПУ;
 - г) диагностика станков с ЧПУ.

- 18. Какие преимущества обеспечивает концепция сквозного проектирования изделий:
 - а) сокращение стадии проектирования изделий;
 - б) возможность сетевого проектирования командой нескольких проектировщиков;
 - в) исключение ошибок «задвоения моделей»;
 - г) возможность диспетчеризации работы команды разработчиков;
 - д) повышение уровня защиты информации;
- 19. Выберите инструментарий быстрого прототипирования:
 - a) 3D принтер;
 - б) SLS 3D принтер;
 - в) широкоформатный УФ-принтер;
 - г) пятиосевой обрабатывающий центр;
 - д) дрель-шуруповерт с бесколлекторным двигателем;
 - е) паяльная станция;
 - ж) станок лазерной резки;
 - з) электронный микроскоп.

20.Обратный инжиниринг это:

- a) процесс создания технической документации на основе имеющейся детали или конструкции.
- б) процесс создания технической документации на основе 3D-модели изделия;
- в) процесс создания 3D-модели изделия на основе технической документации;
- г) процесс проектирования (инжиниринга) основанный на директивном менеджменте, без учета потребностей рынка.

21. Выберите функции MES-системы:

- а) сбор информации о производственном процессе с первичных датчиков связанной с производством;
- б) мониторинг и контроль параметров качества;
- в) обеспечение персонала информацией о параметрах производства для принятия решений;
- г) реагирование на требования по номенклатуре производства и изменение компонентов, сырья и полуфабрикатов, применяемых в процессе производства;
- д) производственная логистика;
- е) моделирование результатов технологического процесса;
- ж) игра в крестики-нолики с использованием инструментариев искусственного интеллекта.

22. Цифровой двойник (англ. Digital Twin) это:

- а) цифровая копия физического объекта или процесса;
- б) чертеж изделия в цифровом формате;
- в) цифровая копия для дублирования цифровой информации в защищенном формате;

б) типовые тестовые вопросы открытого типа:

о) тиновые тестовые вопросы открытого типи.
1. Комплексное преобразование предприятия, его продуктов, бизнес- и операционной модели, целью которого является выход на новые рынки, создание новых каналов продаж и решений, генерирующих новую чистую выручку и приводящих к увеличению стоимости компании – это (цифровая трансформация)
2. Взаимосвязанная сеть машин, механизмов связи и вычислительных мощностей,
использующая такие современные технологии, как искусственный интеллект и машинное обучение,
для анализа данных, управления автоматизированными процессами и самообучения называется
(умная фабрика)
3. Сдерживающими факторами развития цифровых технологий являются нехватка квалифицированных специалистов в данной области и стоимость решений (высокая)
4. Ключевым фактором хозяйственной деятельности в условиях цифровизации является
вид данных. (цифровой)
5. Цифровая инфраструктура приводит к сокращению и
трансакционных издержек (производственных)
6. Индустрия 4.0 предполагает новый подход к производству, основанный на массовом
внедрении (информационных) технологий в промышленность, масштабной

_____ (автоматизации) бизнес-процессов и распространении искусственного интеллекта.

в) типовые практические задания

1. Оценка эффекта от реализации проекта по внедрению цифровых технологий на производстве. Изучите теоретическое пояснение и пример применения методики, предложенные Борисом Меленевским, архитектором бизнес-систем интеллектуального предприятия SAP, CIS. Выполните самостоятельные расчеты по вариантам исходных данных.

К категории экспресс-методов оценки эффекта от внедрения цифровых технологий в производственную систему относится метод измерения общей эффективности оборудования (Overall Equipment Effectiveness, OEE). По критериям World Class Manufacturing показатель ОЕЕ должен находиться на уровне не ниже 85%.

Показатель общей эффективности оборудования (Overall Equipment Effectiveness) оценивает эффективность с трех сторон:

- Доступность: учитывает потери на остановки;
- Производительность учитывает потери в скорости;
- Качество учитывает потери в качестве (отходы, брак).

Наиболее значительными причинами потери эффективности считаются следующие:

- Остановки внеплановые смены оснастки и внеплановое обслуживание, общие остановки, отказ вспомогательного оборудования и т.д.
- Настройка или регулировка переналадка, плановая смена оснастки, простои из-за нехватки материалов или операторов, время на запуск оборудования и т.д.
- Небольшие остановки/простои обычно это остановки до 5 минут, которые не требуют вмешательства вспомогательного персонала. Они могут происходить по причине мелких неполадок, перебоев с доставкой материалов, чисткой/проверкой.
- Снижение производительности это любые неполадки, которые снижают скорость работы оборудованию по равнению с паспортной (износ оборудования, снижение мощности, увеличение времени загрузки.
- Брак при запуске брак, произведенный в процессе запуска, разогрева или других начальных стадий работы оборудования.

Все эти причины оказывают влияние на значение ОЕЕ.

Исходные данные для расчета ОЕЕ:

- Выбранное оборудование на заводе работает в одну смену 8 часов в день.
- В течение рабочего дня предусмотрено 2 перерыва по 30 минут.
- Проектная производительность составляет 60 деталей в минуту.

Фактические данные по работе оборудования.

- В текущем месяце было 22 рабочих дня.
- За месяц были зафиксированы следующие простои оборудования:
- Пять простоев по 3 час; один простой 2 часа и небольшой останов на 14 минут.
- Объем выпуска за месяц 424050 деталей. Из них было отбраковано 9306 деталей.

Оценим эффективность использования оборудования и показатели доступности, производительности и качества.

Решение:

Шаг 1. Расчет планового производственного времени

- Общее время работы равно 10560 минут, расчет по формуле 8 часов * 60 минут * 22 рабочих дня. Плановые остановки составляют 2 перерыва * 30 минут * 22 дня
 - = 1320 минут.
 - Планируемое Производственное Время равно 9240 минутам. (10560-1320) Шаг 2. Расчет операционного времени работы оборудования и доступности оборудования
- Операционное время, равно плановое рабочее время минус простои оборудования (1034 минуты = 900 + 120 + 14 минут.), что составляет 8206 минут (9240 1034).
- Доступность оборудования, рассчитываемое как отношение операционного времени работы оборудования к плановому рабочему времени, составляет 88,81%. (8206 разделить на 9240)

Шаг 3. Расчет чистого операционного времени и производительности

• Чистое операционное время, исходя из объема выпуска и проектной производительности составляет 7067,5 минут. (424050/60)

• Производительность рассчитывается как отношение чистого операционного к общему операционному времени и составляет 86.13%

Шаг 4. Расчет чистого продуктивного времени и коэффициента качества.

- Чистое продуктивное время из расчета выхода годных изделий и проектной производительности составляет 6912,4 минут. =(424050-9306)/60
- Коэффициент качества, определяется как отношение количества годных изделий к общему выпуску производства. В нашем случае он равен 97.81% = (424050-9306) / 42405

Шаг 5. Расчет ОЕЕ

- Показатель общей эффективности ОЕЕ может быть рассчитан как отношение чистого продуктивного времени к планируемому времени работы. В нашем случае это равно 6912,4 минуты разделить на 9240 минут, что составляет 74,81%.
- Другой способ расчета ОЕЕ произведение коэффициентов доступности производительности и качества. Оно также составляет 74,81% = 88,81%*86,13%*97,81%.

Ответ: 74,81%.

2. Оценка эффекта от реализации проекта по внедрению цифровых технологий на производстве. Изучите теоретическое пояснение и пример применения методики, предложенные А.Г. Щербаковым в монографии «Организационно-экономический механизм внедрения цифровых технологий на предприятиях оборонно-промышленного комплекса России» (https://elibrary.ru/item.asp?id=41281143). Теоретическое пояснение: с. 123-132.

Рассчитайте коэффициенты добавленной стоимости для АО «НПК «Уралвагонзавод». Чистая прибыль предприятия берется из строки баланса 2400 и является итоговым результатом деятельности организации (NOPLAT). Сумма «капитала и резервов» и «долгосрочных обязательств» формируют инвестиционный капитал предприятия (СЕ).

Выполните расчеты по исходным данным:

Наименование показателя	Обозначение	2014 г.	2015 г.	2016 г.	2017 г.
Средневзвешенная стоимость капитала, %	WACC	7	7	7	7
Чистая прибыль (убыток), тыс. руб.	NOPLAT	5 688 000	5 714 000	5 441 000	8 102 000
Капитал и резервы, тыс. руб.	I	54 955 000	45 607 000	40 511 000	39 434 000
Долгосрочные обязательства, тыс. руб.	то	115 701 000	103 717 000	84 221 000	91 551 000
Economic Value Added (EVA)	NOPLAT – – WACC (I + TO)	-6 257 920	-4 738 680	-3 290 240	-1 066 950
CEE (capital employed efficiency)	CEE = EVA / I	-0,11	-0,10	-0,08	-0,03
Человеческий капитал (затраты на труд), тыс. руб.	Нс	5 291 960	5 317 514	4 043 068	2 144 045,00
HCE (human capital efficiency)	HCE = EVA / Hc	-1,18	-0,89	-0,81	-0,50
SCE (structural capital efficiency)	SCE = (EVA - - Hc) / EVA	1,85	2,12	2,23	3,01

Решение:

Добавленную стоимость материальных (компьютеры) и нематериальных (квалифицированный персонал) активов для высокотехнологичных предприятий предлагается использовать в составе коэффициента добавленной стоимости VAC (Value Added Coefficient), определяемый по формуле:

VAC = CEE + HCE + SCE,

где CEE (capital employed efficiency) — добавленная стоимость физического капитала, определяемая путем деления добавленной стоимости на инвестированный капитал, показывает, сколько добавочной стоимости создает единица физического капитала;

HCE (human capital efficiency) — добавленная стоимость человеческого капитала, определяемая путем деления добавленной стоимости на затраты на труд, способность рабочей силы создавать добавленную стоимость;

SCE (structural capital efficiency) — добавленная стоимость структурного капитала, определяемая путем деления разницы между добавленной стоимостью и человеческим капиталом (структурный капитал) на добавленную стоимость. Между человеческим и структурным капиталом существует обратная зависимость.

Наименование показателя	Обозначение	2014 г.	2015 г.	2016 г.	2017 г.
Средневзвешенная стоимость капитала, %	WACC	7	7	7	7
Чистая прибыль (убыток), тыс. руб.	NOPLAT	5 688 000	5 714 000	5 441 000	8 102 000
Капитал и резервы, тыс. руб.	I	54 955 000	45 607 000	40 511 000	39 434 000
Долгосрочные обязательства, тыс. руб.	ТО	115 701 000	103 717 000	84 221 000	91 551 000
Economic Value Added (EVA)	NOPLAT – – WACC (I + TO)	-6 257 920	-4 738 680	-3 290 240	-1 066 950
CEE (capital employed efficiency)	CEE = EVA / I	-0,11	-0,10	-0,08	-0,03
Человеческий капитал (затраты на труд), тыс. руб.	Нс	5 291 960	5 317 514	4 043 068	2 144 045,00
HCE (human capital efficiency)	HCE = EVA / Hc	-1,18	-0,89	-0,81	-0,50
SCE (structural capital efficiency)	SCE = (EVA - - Hc) / EVA	1,85	2,12	2,23	3,01
Коэффициент добавленной стоимости VAC	VAC = CEE + + HCE + SCE	0,55	1,13	1,33	2,48

Чем выше значение коэффициента добавленной стоимости, тем выше эффективность использования интеллектуальных возможностей цифровых технологий у высокотехнологического предприятия. По результатам расчета значение коэффициента добавленной стоимости лежит в пределах от 2 до 15.

3. Поиск и оценка лучших практик создания цифровых фабрик в различных сферах производственной деятельности. Необходимо самостоятельно изучить концепцию программы создания цифровых фабрик в разных странах, провести сравнительный анализ различных подходов к реализации программ.

Материалы для изучения:

- 1) Digital Innovation Hubs on Smart Factories in new EU Member States. URL: https://ec.europa.eu/futurium/en/implementing-digitising-european-industry-actions/digital-innovation-hubs-smart-factories-new-eu
- 2) Industrie 4.0 URL: https://www.its-owl.de/fileadmin/PDF/News/2014-01-14-Industrie_4.0- https://www.its-owl.de/fileadmin/PDF/News/2014-01-14-Industrie_4.0- https://www.its-owl.de/fileadmin/PDF/News/2014-01-14-Industrie_4.0- https://www.its-owl.de/fileadmin/PDF/News/2014-01-14-Industrie_4.0- https://www.its-owl.de/fileadmin/PDF/News/2014-01-14-Industrie_4.0- https://www.its-owl.de/fileadmin/PDF/News/2014-01-14-Industrie_A.0- https://www.its-owl.
- 3) Factories of the Future. URL: https://www.effra.eu/sites/default/files/factories_of_the_future_2020_roadmap.pdf

- 4) FITMAN. URL: https://cordis.europa.eu/project/rcn/109803_en.html
- 5) GE's Brilliant Advanced Manufacturing Plant in Pune, India. URL: https://www.ge.com/news/reports/ges-brilliant-advanced-manufacturing-plant-in
- 6) Дорожная карта «Технет» НТИ. URL: https://nti2035.ru/documents/docs/%D0%94%D0%9A%20%D0%A2%D0%B5%D1%85%D0%BD%D0%B5%D1%85%D0%BD%D0%B5%D1%85.pdf
 - 7) Национальная технологическая инициатива. URL: http://www.nti2035.ru/nti/
- 8) Национальная технологическая инициатива. «Технет». URL: http://www.nti2035.ru/technology/technet

Дайте ответ на следующие вопросы:

Какие инструменты предлагает данная программа для развития промышленных технологий? Какие параллели можно провести с аналогичными российскими инициативами?

4. Изучите результаты реализации проектов применения цифровых технологий и создания цифровых фабрик. Составьте перечень критериев для оценки сложности разработки и реализации проектов создания цифровых фабрик.

Материал для изучения:

Тарасов И.В., Попов Н.А. ИНДУСТРИЯ 4.0: трансформация производственных фабрик. // Стратегические решения и риск-менеджмент. 2018;(3):38-53. https://doi.org/10.17747/2078-8886-2018-3-38-53