/МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Вычислительная и прикладная математика»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ «Логика и теория алгоритмов»

Направление подготовки 09.03.04 «Программная инженерия»

Направленность (профиль) подготовки «Программное обеспечение систем искусственного интеллекта»

Уровень подготовки – бакалавриат

Квалификация выпускника – бакалавр

Форма обучения – очная

Срок обучения – 4 года

Рязань

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов и процедур, предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности компетенций и индикаторов их достижения, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости и промежуточная аттестация проводятся с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся на практических занятиях по результатам выполнения и защиты обучающимися индивидуальных заданий, по результатам выполнения контрольных работ и тестов, по результатам проверки качества конспектов лекций и иных материалов.

В качестве оценочных средств на протяжении семестра используется устные и письменные ответы студентов на индивидуальные вопросы, письменное тестирование по теоретическим разделам курса, реферат. Дополнительным средством оценки знаний и умений студентов является отчет о выполнении практических заданий и его защита.

По итогам курса обучающиеся сдают зачёт. Форма проведения – устный ответ с письменным подкреплением по утвержденным билетам, сформулированным с учетом содержания дисциплины. В билет для зачёта включается два теоретических вопроса и задача. В процессе подготовки к устному ответу студент должен составить в письменном виде план ответа.

1. Перечень компетенций с указанием этапов их формирования

При освоении дисциплины формируются следующие компетенции: ОПК-1 (индикаторы ОПК-1.1, ОПК-1.2).

Указанные компетенции формируются в соответствии со следующими этапами:

- формирование и развитие теоретических знаний, предусмотренных указанными компетенциями (лекционные занятия, самостоятельная работа студентов);
- приобретение и развитие практических умений предусмотренных компетенциями (практические занятия, самостоятельная работа студентов);
- закрепление теоретических знаний, умений и практических навыков, предусмотренных компетенциями, в ходе решения конкретных задач на занятиях, выполнения индивидуальных заданий на практических занятиях и их защиты, а также в процессе сдачи экзамена.

2 Показатели и критерии оценивания компетенций (результатов) на различных этапах их формирования, описание шкал оценивания

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;

- продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

При достаточном качестве освоения более 80% приведенных знаний, умений и навыков преподаватель оценивает освоение данной компетенции в рамках настоящей дисциплины на эталонном уровне, при освоении более 60% приведенных знаний, умений и навыков — на продвинутом, при освоении более 40% приведенных знаний умений и навыков — на пороговом уровне. При освоении менее 40% приведенных знаний, умений и навыков компетенция в рамках настоящей дисциплины считается неосвоенной.

Уровень сформированности каждой компетенции на различных этапах ее формирования в процессе освоения данной дисциплины оценивается в ходе текущего контроля успеваемости и представлено различными видами оценочных средств.

Оценке сформированности в рамках данной дисциплины подлежат компетенции/индикаторы:

Показатели достижения планируемых результатов обучения и критерии их оценивания на разных уровнях формирования компетенций приведены в таблице 1.

Таблица 1. Показатели достижения индикаторов компетенции

1	2	3	4
Компетенция: код по	Индикаторы	Этап	Наимено-
ФГОС 3++, формули-	_		вание оце-
ровка			ночного
			средства
ОПК-1 Способен при-	ОПК-1.1 Демонстрирует естествен-		
менять естественнона-	нонаучные и общеинженерные зна-		
учные и общеинженер-	ния, знания методов математическо-		
ные знания, методы	го анализа и моделирования, теоре-		
математического ана-	тического и экспериментального ис-		
лиза и моделирования,	следования;		
теоретического и экс-	<u>Знать</u> : основные понятия естественно-		
периментального ис-	научных общеинженерных дисциплин:		
следования в профес-	математического анализа, аналитиче-		
сиональной деятельно-	ской геометрии, линейной и векторной		
сти	алгебры, теории вероятностей и мате-		
	матической статистики, теории диф-		
	ференциальных уравнений, информа-		
	ционных технологий; основ общей фи-	1	_
	зики.	-	Зачёт
	<u>Уметь</u> : правильно и технически гра-		
	мотно поставить, и математически по-		
	яснить и решить конкретную задачу в		
	рассматриваемой области;		
	Владеть: естественнонаучным и об-		
	щеинженерными знаниями, знаниями		
	методов математического анализа и		
	моделирования, теоретического и экс-		
	периментального исследования.		
	ОПК-1.2 Применяет естественнона-		
	учные и общеинженерные знания,		
	методы математического анализа и		

1	2	3	4
	моделирования, теоретического и		
	экспериментального исследования в		
	профессиональной деятельности		
	Знать: основы естественнонаучных и		
	общеинженерных дисциплин, методы		
	математического анализа и моделиро-		
	вания, иметь опыт обработки экспери-		
	ментальных данных математическими		
	методами.		
	<u>Уметь</u> : использовать навыки аналити-		
	ческого и численного решения алгеб-		
	раических и дифференциальных урав-		
	нений и систем, методов математиче-		
	ского анализа и моделирования в про-		
	фессиональной деятельности.		
	Владеть: и применять в профессио-		
	нальной деятельности естественнона-		
	учные и общеинженерные знания, ме-		
	тоды математического анализа и моде-		
	лирования, а также теоретического и		
	экспериментального исследования.		

Преподавателем оценивается содержательная сторона и качество материалов, приведенных в отчетах студента по практическим занятиям. Кроме того, преподавателем учитываются ответы студента на вопросы по соответствующим видам занятий при текущем контроле:

- контрольные опросы;
- задания для практических занятий.

Принимается во внимание знания обучающимися:

- основы естественнонаучных и общеинженерных дисциплин, методы математического анализа и моделирования, иметь опыт обработки экспериментальных данных математическими методами;
- основные понятия естественнонаучных общеинженерных дисциплин: математического анализа, аналитической геометрии, линейной и векторной алгебры, теории вероятностей и математической статистики, теории дифференциальных уравнений, информационных технологий; основ общей физики.

наличие умений:

- использовать навыки аналитического и численного решения алгебраических и дифференциальных уравнений и систем, методов математического анализа и моделирования в профессиональной деятельности;
- правильно и технически грамотно поставить, и математически пояснить и решить конкретную задачу в рассматриваемой области.

обладание навыками:

- в профессиональной естественнонаучной и общеинженерной областях, методах математического анализа и моделирования, а также теоретического и экспериментального исследования.

Критерии оценивания уровня сформированности компетенции в процессе выполнения практических работ:

41%-60% правильных ответов соответствует пороговому уровню сформированности компетенции на данном этапе ее формирования;

61%-80% правильных ответов соответствует продвинутому уровню сформирован-

ности компетенции на данном этапе ее формирования;

81%-100% правильных ответов соответствует эталонному уровню сформированности компетенции на данном этапе ее формирования.

Сформированность уровня компетенций не ниже порогового является основанием для допуска обучающегося к промежуточной аттестации по данной дисциплине.

Формой промежуточной аттестации по данной дисциплине является зачет, оцениваемый по принятой в ФГБОУ ВО «РГРТУ» системе: «зачтено» и «не зачтено».

Критерии оценивания промежуточной аттестации представлены в таблице.

Шкала оценивания	Критерии оценивания
«зачтено»	оценки «зачтено» заслуживает обучающийся, продемон-
	стрировавший полное знание материала изученной дисци-
	плины, усвоивший основную литературу, рекомендован-
	ную рабочей программой дисциплины; выполнивший все
	практические задания; показавший систематический ха-
	рактер знаний по дисциплине, ответивший на все вопросы
	билета или допустивший погрешность в ответе вопросы,
	но обладающий необходимыми знаниями для их устране-
	ния под руководством преподавателя;
«не зачтено»	оценки «не зачтено» заслуживает обучающийся, не вы-
	полнивший практические задания, продемонстрировавший
	серьезные пробелы в знаниях основного материала изу-
	ченной дисциплины, не ответивший на все вопросы билета
	и дополнительные вопросы. Оценка «не зачтено» ставится
	обучающимся, которые не могут продолжить обучение по
	образовательной программе без дополнительных занятий
	по соответствующей дисциплине (формирования и разви-
	тия компетенций, закрепленных за данной дисциплиной).

3. Типовые контрольные задания или иные материалы

ФОС по дисциплине содержит следующие оценочные средства, позволяющие оценить знания, умения и уровень приобретенных компетенций при текущем контроле и промежуточной аттестации, разбитые по модулям дисциплины:

• перечень вопросов к зачёту;

Средства для оценки различных уровней формирования компетенций по категориям «знать», «уметь», «владеть» обеспечивают реализацию основных принципов контроля, таких, как объективность и независимость, практико-ориентированность, междисциплинарность.

С учетом этого, контрольные вопросы (задания, задачи,) входящие в ФОС, для различных категорий и уровней освоения компетенций имеют следующий вид:

Уровень ЗНАТЬ

5 pubent 311A 1 D		
Дескрипторы	Пример задания из оценочного средства	
Методы математических,	1.	Определение машины Тьюринга (МТ).
естественнонаучных и об-	2.	Определение вычислимости по Тьюрингу.
щеинженерных дисциплин,	3.	Определение нормального алгорифма Маркова
используемые для решения	(HA).	
задач анализа и проектирова-	4.	Определение вычислимости по Маркову.

ния информационных систем	5. Примеры алгоритмически неразрешимых проблем.	
различного назначения или их	6. Основные определения и формулировки теорем	
компонентов	теории булевых функций.	
	7. Определение формальной аксиоматической тео-	
	рии, вывода и доказательства в теории.	

Уровень УМЕТЬ

Дескрипторы	Пример задания из оценочного средства
Правильно и технически гра-	1. Построить программу машины Тьюринга (МТ),
мотно поставить, и математи-	аннулирующую все слова в заданном алфавите, содержа-
чески пояснить и решить кон-	щие хотя бы одно вхождение заданного слова u.
кретную задачу в рассматри-	2. Написать схему нормального алгорифма (НА),
ваемой области	распознающего наличие вхождений двух заданных непу-
	стых слов во входное слово.
	3. Написать схему НА, обращающего входное слово.
	4. Построить минимальную ДНФ для булевой функ-
	ции, заданной вектором значений: (1100 0101 1111 0001).
	5. Доказать формулу ((($A→B$) $→A$) $→A$) в исчислении
	высказываний (в формальной теории L с тремя схемами
	аксиом).
	Доказать формулу $(\forall x)(A(x) \rightarrow B(x)) \rightarrow ((\forall x)(A(x) \rightarrow$
	$(\forall x)B(x))$ в исчислении предикатов 1-го порядка

Перечень вопросов к зачёту

- 1. Определение машины Тьюринга (МТ).
- 2. Определения конфигурации МТ и отношения выводимости на множестве конфигураций
- 3. Определение вычислимости по Тьюрингу.
- 4. Определение нормального алгорифма Маркова (НА).
- 5. Определение процесса работы НА со словом.
- 6. Определение вычислимости по Маркову.
- 7. Понятие эквивалентных нормальных алгорифмов.
- 8. Определение изображения и записи НА.
- 9. Определения алгорифмически разрешимого и алгорифмически перечислимого языка.
- 10. Примеры алгоритмически неразрешимых проблем
- 11. Доказать теорему композиции НА.
- 12. Доказать эквивалентность НА и его замыкания.
- 13. Понятие перевода в двухбуквенный алфавит. Формулировка теоремы о переволе.
- 14. Определения изображения и записи НА. Примеры. Формулировка теоремы об универсальном НА.
- 15. Теоремы объединения, разветвления и повторения НА (формулировки). Построение НА, распознающего равенство слов.
- 16. Связь разрешимости и перечислимости. Доказать невозможность разрешающего НА для языка, для которого невозможен полуразрешающий НА.

- 17. Проблемы применимости и самоприменимости для НА. Доказательство неразрешимости проблемы самоприменимости.
- 18. Доказать алгоритмическую неразрешимость проблемы применимости для НА.
- 19. Понятие булевой функции. Таблица булевой функции.
- 20. Равенство булевых функций. Фиктивные переменные.
- 21. Понятие формулы над базисом. Полные и замкнутые множества булевых функций.
- 22. Дизъюнктивные и конъюнктивные нормальные формы (ДНФ и КНФ). Построение минимальных ДНФ.
- 23. Классы Поста.
- 24. Теорема Поста (критерий функциональной полноты).
- 25. Определение формальной аксиоматической теории, вывода и доказательства в теории.
- 26. Определение формулы в исчислении высказываний.
- 27. Определения терма и формулы в исчислении предикатов.
- 28. Определения интерпретации в исчислении предикатов.
- 29. Определения выполнимости и истинности в заданной интерпретации.
- 30.Определение логически общезначимой формулы.
- 31. Определить исчисление высказываний и доказать его непротиворечивость.
- 32. Доказать теорему дедукции для исчисления высказываний.
- 33. Доказать полноту исчисления высказываний.
- 34. Определите исчисление высказываний и докажите свойства дизъюнкции (следствие из теоремы о 9 секвенциях).
- 35. Определите исчисление высказываний и докажите свойства конъюнкции (следствие из теоремы о 9 секвенциях).
- 36. Перечислить аксиомы и правила вывода исчисления предикатов 1-го порядка и доказать логическую общезначимость любой формулы, получаемой из схемы аксиомы