МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. В. Ф. УТКИНА

Кафедра радиоуправления и связи

ОЦЕНОЧНЫЕ МАТЕРИАЛДЫ

по дисциплине

«Системы сигнализации в сетях связи»

Специальность — 11.03.02 Инфокоммуникационные технологии и системы связи

Программно-аппаратная инженерия в телекоммуникациях "интернет вещей" Квалификация выпускника — бакалавр

Форма обучения – очная

Оценочные материалы представляют собой совокупность контрольноизмерительных материалов и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения. Оценочные материалы используются при проведении текущего контроля и промежуточной аттестации студентов.

Основная задача — обеспечить оценку уровня сформированности компетенций, приобретаемых обучающимися в результате изучения дисциплины.

Текущий контроль уровня знаний производится проверкой подготовки студентов к лабораторным работам по вопросам, сформулированным в методических указаниях к лабораторным работам. Текущий контроль уровня умений производится в ходе выполнения лабораторных работ, оформления отчета и защиты. В ходе выполнения лабораторных работ также формируются навыки работы в среде LabVIEW.

Промежуточная аттестация студентов проводится в форме зачета. К сдаче зачета допускаются студенты, выполнившие и защитившие все лабораторные работы.

Паспорт оценочных материалов по дисциплине

No	Контролируемые разделы	Код	Вид, метод,
п/п	дисциплины	контролируемой	форма
		компетенции (или	контролируемой
		ее части)	компетенции
1	РЭС и общая характеристика	ОПК-5, ПК-1	зачет
	их проектирования и		
	моделирования		
2	Моделирование воздействий	ОПК-5, ПК-8	зачет
3	Моделирование РЭС по D-	ОПК-5, ПК-8	зачет
	схеме		
4	Компьютерный экспкеримент	ОПК-5, ОПК-8,	зачет
	и оптимизация проектных	ПК-8	
	решений		
5	Программное обеспечение	ПК-5, ПК-8.	зачет
	компьютерного		
	проектирования РЭС		

Шкала оценивания компетенций (результатов)

При выставлении зачета используются следующие критерии:

Оценка	Критерий
Зачтено	Прочное усвоение материала, предусмотренного
	учебной программой дисциплины, как лекционного,
	так и изученного в лабораторном практикуме.

	Правильный ответ на вопросы промежуточной		
	аттестации с приведением примеров, в том числе из		
	смежных дисциплин. Дополнительным		
	требованием, подтверждающим работу		
	обучающегося в семестре, является наличие		
	конспекта лекций.		
Не зачтено	Большие пробелы в знаниях. Низкое качество		
	освоения материала лабораторных работ.		
	Отсутствие ответа хотя бы на один из вопросов: 1)		
	моделирование функционирования РЭС:		
	математические схемы; 2) математическая модель		
	РЭС по D-схеме; 3) численное решение нелинейных		
	дифференциальных уравнений; 4) схема		
	компьютерного эксперимента.		
	1 1		

Вопросы текущего контроля по лабораторным работам.

Лаб. работа №1. Генерирование независимых случайных процессов

- 1. Как записывается N-мерная плотность распределения вероятности независимого случайного процесса?
- 2. Какой алгоритм вычисления используется в мультипликативном датчике?
- 3. Какой алгоритм вычисления используется в смешанном генераторе?
- 4. Как находится нелинейное преобразование равномерно распределенной случайной величины для получения случайной величины с заданным законом распределения?
- 5. Какие условия должны выполняться, чтобы закон распределения суммы случайных величин приближался к нормальному?
- 6. Как из суммы равномерно распределенных случайных величин формируется случайная величина с нулевым математическим ожиданием и единичной дисперсией?
- 7. Как наглядно можно определить независимость двух случайных величин?
- 8. Что такое гистограмма распределения?
- 9. Как определяется оценка вероятности попадания случайной величины в і-й разряд?
- 10. Как находится оценка функции распределения случайной величины?
- 11. Как рассчитывается вероятность попадания случайной величины в і-й разряд?
- 12. Что используется в качестве меры расхождения между требуемым и полученным распределениями по критерию Колмогорова?
- 13 Что представляет собой Case-структура?
- 14. Какие параметры гистограммы задаются в экспресс ВП Histogram?
- 15. Какие параметры гистограммы задаются в ВП Histogram?
- 16. Что позволяет выполнить панель редактирования графика?

- 17. Что позволяет выполнить палитра элементов управления графиком?
- 18. Что позволяет выполнить панель редактирования курсоров?
- 19. Начертите блок-схему программы вычисления оценки функции распределения.
- 20. Начертите блок-схему программы вычисления функции распределения нормальной случайной величины.

Лаб. работа №2. Генерирование коррелированных случайных процессов

- 1. Как определяется корреляционный момент?
- 2. Что такое корреляционная функция?
- 3. Как зависит измеренная корреляционная функция от длины реализации случайного процесса?
- 4. Какой случайный процесс называется некоррелированным?
- 5. Некоррелированность означает независимость? Какая статистическая связь учитывается корреляционной функцией?
- 6. Как связана корреляционная функция с энергетическим спектром?
- 7. Почему спектр дискретных процессов измеряется в диапазоне частот от 0 до $f_0/2$?
- 8. Как генерируется коррелированная случайная последовательность методом формирующего фильтра?
- 9. Запишите, как связаны выходной и входной процессы для СС-фильтра.
- 10. Как связаны значения корреляционной функции с коэффициентами ССфильтра?
- 11. Нарисуйте схему СС-фильтра.
- 12. Запишите системную функцию и уравнение АР-фильтра.
- 13. Запишите передаточную функцию и условие устойчивости АР-фильтра первого порядка.
- 14. Как зависит энергетический спектр выходного процесса AP-фильтра первого порядка от коэффициента a_I ?
- 15 Как зависит характер полюсов передаточной функции AP-фильтра 2-го порядка от коэффициентов a_1 и a_2 ?
- 16. Какой ВП используется в лабораторной работе для измерения автокорреляционной функции?
- 17. Какой ВП используется в лабораторной работе для измерения энергетического спектра?
- 18. Какой ВП используется в LabVIEW для моделирования рекурсивного цифрового фильтра?
- 19. Чем отличаются коэффициенты числителя и знаменателя системных функций APCC-фильтра и БИХ-фильтра, реализованного в LabVIEW?
- 20. Что представляет собой структура While Loop?
- 21. Чем определяется количество итераций в структурах While Loop и For Loop?

Лаб. работа №3. Дискретизация непрерывных процессов

1. Какие ошибки возникают при замене непрерывного процесса цифровым?

- 2. При каких условиях, согласно теореме Котельникова, можно восстановить непрерывный процесс по его отсчетам без ошибки?
- 3. Почему восстанавливающий фильтр с прямоугольной АЧХ физически не реализуем?
- 4. Что такое интерполяция и экстраполяция?
- 5. Изобразите восстановленный процесс при ступенчатой интерполяции.
- 6. Изобразите восстановленный процесс при ступенчатой экстраполяции.
- 7. Какой вид имеет импульсная характеристика фиксатора нулевого порядка?
- 8. Изобразите восстановленный процесс при линейной интерполяции.
- 9. Изобразите восстановленный процесс при линейной экстраполяции.
- 10. Как можно реализовать линейную интерполяцию?
- 11. Как определяется полная ошибка дискретизации?
- 12. Как определяется ошибка интерполяции?
- 13. Как определяется усредненная среднеквадратичная ошибка?
- 14. Зачем в исходном массиве, описывающем непрерывный процесс, вводятся нулевые элементы массива?
- 15 Что выполняет функция Index Array?
- 16. Что выполняет функция Array Size?
- 17. Для чего в разрабатываемом ВП используется функция Quolitent & Remainder (Частное и остаток)?
- 18. Какие действия выполняет функция Select (Выбрать)?
- 19. Для чего используется функция Rotate 1D Array?
- 20. Для чего используется функция Array Max & Min?
- 21. Как генерируется исходный массив?
- 22. Как генерируется массив дискретного процесса?
- 23. Как генерируется массив, восстановленный фиксатором нулевого порядка?
- 24. Как генерируется массив, восстановленный фиксатором первого порядка?
- 25. Изобразите блок-схему формирования задержанного исходного массива.
- 26. Изобразите блок-схему определения СКО ошибки дискретизации.

Лаб работа №4. Моделирование линейных непрерывных систем

- 1. В каком виде записывается нелинейное дифференциальное уравнение первого порядка для численного решения?
- 2. Как записывается разложение функции в ряд Тейлора?
- 3. Поясните графически решение дифференциального уравнения прямым методом Эйлера.
- 4. Как записывается рекуррентная формула для решения нелинейного дифференциального уравнения первого порядка прямым методом Эйлера?
- 5. Поясните графически решение дифференциального уравнения обратным методом Эйлера.
- 6. Запишите рекуррентную формулу для решения нелинейного дифференциального уравнения первого порядка обратным методом Эйлера.
- 7. Запишите дифференциальное уравнение интегрирующей цепи в форме, удобной для решения методом Эйлера.

- 8. Запишите рекуррентную формулу для решения дифференциального уравнения интегрирующей цепи прямым методом Эйлера.
- 9. Запишите рекуррентную формулу для решения дифференциального уравнения интегрирующей цепи обратным методом Эйлера.
- 10. Какие два пути используются при замене непрерывной передаточной функции дискретной передаточной функцией?
- 11. Запишите рекуррентную формулу для численного интегрирования по методу прямоугольников (1).
- 12. Запишите рекуррентную формулу для численного интегрирования по методу прямоугольников (2).
- 13. Запишите рекуррентную формулу для численного интегрирования по методу трапеций.
- 14. Выведите дискретную передаточную функцию интегратора по методу прямоугольников (1).
- 15. Выведите дискретную передаточную функцию интегратора по методу прямоугольников (2).
- 16. Выведите дискретную передаточную функцию интегратора по методу трапеций.
- 17. Почему одно и то же аналоговое устройство может описываться отличающимися дискретными передаточными функциями?
- 18. Какая структура используется для вычислений по рекуррентным формулам?
- 19. Откуда при моделировании берется значение y_{k-1} , необходимое для расчета y_k ?
- 20. Как образовать терминалы для ввода и вывода переменных в структуре Formula Node?
- 21. Почему при моделировании замкнутой системы используется ВП IIR Filter PtByPt, а не ВП IIR Filter?
- 22. Почему при соединении выхода БИХ-фильтра с его входом в цепи обратной связи автоматически появляется регистр сдвига?
- 23. Для чего используется ВП ODE Linear nth Order Numeric?
- 24. Для чего используется ВП Bundle (Объединить)?

6.1 Вопросы к промежуточной аттестации (зачету)

- 1. Общая характеристика РЭС и их проектирования.
- 2. Особенности компьютерного проектирования.
- 3. Объекты проектирования и их модели.
- 4. Математическая модель РЭС. Классификация моделей.
- 5. Моделирование функционирования РЭС. Математические схемы.
- 6. Моделирование детерминированных воздействий.
- 7. Формирование случайных величин с законом распределения, отличным от равномерного методом обратной функции.

- 8. Формирование случайных величин с законом распределения, отличным от равномерного методом отбора.
- 9. Гистограмма распределения. Оценка законов распределения случайной величины.
- 10. Генерирование статистически независимых случайных последовательностей.
 - 11. Генерирование коррелированных случайных последовательностей.
 - 12. Компьютерная модель РЭС
 - 13. Математическая модель РЭС по D-схеме.
 - 14. Численное решение нелинейных дифференциальных уравнений.
 - 15. Формула дискретной свертки
- 16. Замена непрерывной передаточной функции дискретной передаточной функцией.
 - 17. Моделирование узкополосных радиоустройств. Метод несущей.
- 18. Моделирование узкополосных радиоустройств. Метод комплексной огибающей.
- 19. Моделирование узкополосных радиоустройств. Метод информационного параметра.
 - 20. Компьютерный эксперимент. Схема эксперимента.
- 21. Планирование эксперимента. Факторный анализ. Регрессионный анализ
 - 22. ППП МісгоСар и его применение.
 - 23. ППП VisSim и его применение.
 - 24. ППП LabVIEW и его применение.

Контрольные вопросы для оценки сформированности компетенций

- 1. Классификация РЭС по функциональной сложности.
- 2. Что такое концептуальная модель РЭС?
- 3. Какие виды математических моделей составляются для РЭС?
- 4. Как составляется компьютерная модель РЭС?
- 5. Как можно оценить плотность вероятности и функцию распределения по гистограмме случайной величины?
 - 6. Как можно сформировать коррелированный случайный прпоцесс?
- 7. Как находится численное решение дифференциального уравнения прямым и обратным методами Эйлера?
- 8. Какие три метода используются при моделировании узкополосных РЭС?. Охарактеризуйте их.
- 9. Составьте и опишите структурную схему компьютерного эксперимента.
- 10. Какие пакеты прикладных программ используются при компьютерном проектировании РЭС?.