МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Электронные вычислительные машины»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Программирование микроконтроллеров»

Направление подготовки 09.03.01 Информатика и вычислительная техника

Направленность (профиль) подготовки
Программно-аппаратное обеспечение вычислительных систем, комплексов и компьютерных сетей

Квалификация (степень) выпускника — бакалавр

Форма обучения — очная, заочная

1. ОБШИЕ ПОЛОЖЕНИЯ

Оценочные материалы – это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям ОПОП.

Основная задача – обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций.

Контроль знаний обучающихся проводится в форме промежуточной аттестации.

Промежуточный контроль по дисциплине осуществляется проведением экзамена.

2. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Уровень освоения компетенций, формируемых дисциплиной:

а) описание критериев и шкалы оченивания тестирования:

Шкала оценивания	Критерий
3 балла (эталонный уровень)	уровень усвоения материала, предусмотренного программой: процент верных ответов на тестовые вопросы от 85 до 100%
2 балла (продвинутый уровень)	уровень усвоения материала, предусмотренного программой: процент верных ответов на тестовые вопросы от 75 до 84%
1 балл (пороговый уровень)	уровень усвоения материала, предусмотренного программой: процент верных ответов на тестовые вопросы от 60 до 74%
0 баллов	уровень усвоения материала, предусмотренного программой: процент верных ответов на тестовые вопросы от 0 до 59%

б) описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий
3 балла	выставляется студенту, который дал полный ответ на вопрос,
(эталонный уровень)	показал глубокие систематизированные знания, смог привести примеры, ответил на дополнительные вопросы преподавателя.
2 балла	выставляется студенту, который дал полный ответ на вопрос, но на
(продвинутый уровень)	некоторые дополнительные вопросы преподавателя ответил только с помощью наводящих вопросов.
1 балл	выставляется студенту, который дал неполный ответ на вопрос в
(пороговый уровень)	билете и смог ответить на дополнительные вопросы только с помощью преподавателя.
0 баллов	выставляется студенту, который не смог ответить на вопрос

в) описание критериев и шкалы оценивания практического задания:

Шкала оценивания	Критерий
3 балла	Задача решена верно
(эталонный уровень)	
2 балла	Задача решена верно, но имеются технические неточности в
(продвинутый уровень)	расчетах
1 балл	Задача решена верно, с дополнительными наводящими вопросами
(пороговый уровень)	преподавателя
0 баллов	Задача не решена

На экзамен выносится: тестовое задание, 1 практическое задание и 1 теоретический вопрос. Студент может набрать максимум 9 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Шкала оценивания		Критерий	
отлично	8 – 9 баллов	Обязательным условием является выполнение	
(эталонный уровень)		всех предусмотренных в течение семестра заданий	
хорошо	6 – 7 баллов		
(продвинутый уровень)			
удовлетворительно	4 – 5 баллов		
(пороговый уровень)			
неудовлетворительно	0 – 3 баллов	Студент не выполнил всех предусмотренных в	
		течение семестра текущих заданий	

3. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой компетенции (или её части)	Наименован ие оценочного
		,	мероприятия
1	2	3	4
1	Раздел 1. Архитектуры микропроцессорных систем	ПК-5.1, ПК-5.2	зачет
2	Раздел 2. Структуры процессоров микропроцессорных систем	ПК-5.1, ПК-5.2	зачет
3	Раздел 3. Система команд микроконтроллеров ARM Cortex-M3	ПК-5.1, ПК-5.2	зачет
4	Раздел 4. Обработка данных в микроконтроллерах ARM Cortex-M3	ПК-5.1, ПК-5.2	зачет
5	Раздел 5. Периферийные устройства микропроцессорных систем	ПК-5.1, ПК-5.2	экзамен
6	Раздел 6. Аналоговые интерфейсы микропроцессорных систем	ПК-5.1, ПК-5.2	экзамен

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАЛАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация (зачет, экзамен)

ПК-5: Способен осуществлять программно-аппаратную реализацию алгоритмов цифровой обработки информации

ПК-5.1. Проектирует и реализует программно-аппаратное описание алгоритмов цифровой обработки информации

Знать

особенности разработки программного обеспечения на базе микроконтроллеров

Уметь

выполнять инициализацию периферийных устройств микроконтроллера в задачах цифровой обработки информации

Владеть

навыками разработки программного обеспечения для микроконтроллеров

ПК-5.2. Выполняет аргументированных выбор программно-аппаратных средств реализации алгоритмов цифровой обработки информации

Знать

современные среды разработки программного обеспечения для микроконтроллеров и особенности их настройки для решения задачи цифровой обработки информации

Уметь

выполнять программную реализацию алгоритмов цифровой обработки информации на базе микроконтроллеров

Владеть

навыками отладки программного обеспечения на аппаратной платформе, а также в отладчике среды программирования

а) типовые тестовые вопросы закрытого типа:

- 1. Процессор микроконтроллера 1986ВЕ9х имеет разрядность:
- а. 8 бит
- б. 16 бит
- в. 32 бита
- г. 64 бита
- 2. Команды в микроконтроллере 1986ВЕ9х хранятся в:
- а. Flash-памяти
- б. ОЗУ
- в. EEPROM
- г. внешней памяти
- 3. Какую функцию выполняет блок PLL в тактировании процессора?
- а. Мультиплексирует сигналы синхронизации
- б. Выполняет предделение тактовой частоты
- в. Выполняет умножение тактовой частоты
- г. Контролирует состояние внешних генераторов
- 4. Сторожевой таймер используется для?
- а. формирования ШИМ
- б. контроля выполнения программы и сброса в случае зависания
- в. выделения кванта времени для задач при использовании ОСРВ
- г. работы часов реального времени

5. Сколько регистров блока батарейного домена может использоваться для хранения
данных?
a. 10
б. 12
в. 14
г. 16
6. Режим подтяжки порта (к питанию или к земле) используется в
а. режиме ввода информации
б. аналоговом режиме при подключении к АЦП
в. для подключения вывода таймера в режиме ШИМ
г. аналоговом режиме при подключении к ЦАП
1. аналоговом режиме при подколо тенни к ц. ит
7. Таблица векторов прерываний хранит
а. флаги событий прерываний
б. регистры контроллера NVIC
в. обработчики прерываний
г. адреса процедур обработчиков прерываний
0. D
8. Разрядность результата преобразования АЦП в МК 1986ВЕ9х
а. 8 бит
б. 10 бит
в. 12 бит
г. 16 бит
9. Интерфейс UART не является
а. синхронным
б. последовательным
в. дуплексным
г. цифровым
10. Какой интерфейс не поддерживает подключение нескольких устройств
10. Какой интерфейс не поддерживает подключение нескольких устройств а. SPI
6. UART
B. CAN
r. I2C
б) типовые тестовые вопросы открытого типа:
1
1 – микропроцессорная система, выполненная на одной микросхеме, содержащая процессор, память, периферийные устройства, интерфейсы для обмена информацией <i>Ответ: микроконтроллер</i>
2. Контроллер ПДПобеспечивает взаимодействие
3. Процесс приостановки выполнения основной программы для обработки исключения называетс
Ответ: прерыванием
4 Managaran and an analysis and analysis and analysis and analysis and analysis and analysis and analysis are
4. Микроконтроллер хранит программу в постоянной памяти, а данные в оперативной, что соответствуетархитектуре. **Omsem: гарвардской**
5. Выводы микроконтроллера могут работать в одном из следующих режимов: аналоговый, порт основная функция,
Ответ: альтернативная, переопределенная

Ответ: фронта Ответ: фронта
7. Внешний тактовый резонатор LSE может использоваться для
8. Сторожевой таймер обеспечивает выполнениеконтроллера в случае зависания при обработке. <i>Ответ: перезагрузки</i>
9. Таймеры общего назначения имеют разрядностьбит. <i>Ответ: 16</i>
10. SPI является синхронныминтерфейсом передачи данных <i>Ответ: последовательным</i>

в) типовые практические задания:

Задание 1. Расчитайте среднее значение 32-х элементов, хранящихся в оперативной памяти с начального адреса (используя язык assembler с использованием раздаточного материала)

Задание 2. Расчитайте минимальное и максимальное значение 64-х элементов, хранящихся в оперативной памяти с начального адреса (используя язык assembler с использованием раздаточного материала)

Задание 3. Расчитайте медиану 16-х элементов, хранящихся в оперативной памяти с начального адреса (используя язык assembler с использованием раздаточного материала)

Задание 4. Составьте алгоритм и программу для формирования в ПЗУ команд таблицы заданной функции с меткой tab, содержащей 16 значений разрядностью 1 байт (используя язык assembler с использованием раздаточного материала)

Задание 5. Сформировать последовательность чисел Фибоначчи с записью в оперативную память. (используя язык assembler с использованием раздаточного материала)

Типовые теоретические вопросы на зачет по дисциплине:

- 1. Микроконтроллер как микропроцессорная система. Общие понятия, назначение, функциональный состав.
- 2. Архитектура МПС, назначение элементов архитектуры. Принстонская и гарвардская архитектуры, характерные признаки микроконтроллерных систем.
- 3. Архитектура микроконтроллеров MDR1986BE9x.
- 4. Система команд микроконтроллеров MDR1986BE9x.
- 5. Функциональный состав микроконтроллеров ARM Cortex-M3.
- 6. Распределение адресного пространства микроконтроллеров ARM Cortex-M3.
- 7. Организация устройств памяти микроконтроллеров ARM Cortex-M3.
- 8. Назначение контроллера тактовых частот в микроконтроллерах ARM Cortex-M3.
- 9. Назначение контроллера прерываний в микроконтроллерах ARM Cortex-M3.
- 10. Назначение контроллера прямого доступа к памяти в микроконтроллерах ARM Cortex-M3.
- 11. Классификация процессоров по разрядности и способам доступа к данным.
- 12. Назначение регистров микроконтроллеров ARM Cortex-M3.
- 13. Форматы данных в микроконтроллерах ARM Cortex-M3.
- 14. Схема связей блока РОН с АЛУ и регистрами периферийных устройств.
- 15. Форматы команд обработки данных микроконтроллера ARM Cortex-M3.

- 16. Сравнительный анализ команд обращения к памяти микроконтроллеров ARM Cortex-M3.
- 17. Методы адресации микроконтроллера ARM Cortex-M3.
- 18. Использование суффиксов в обозначениях команд в микроконтроллерах ARM Cortex-M3.
- 19. Условное выполнение команд в микроконтроллерах ARM Cortex-M3.
- Признаки результатов и команды передачи управления в микроконтроллерах ARM Cortex -M3.
- 21. Выполнение логических операций в микроконтроллерах ARM Cortex-M3.
- 22. Выполнение арифметических операций в микроконтроллерах ARM Cortex-M3.
- 23. Операции умножения и деления в микроконтроллерах ARM Cortex-M3.
- 24. Операции сдвига и типы сдвигов в микроконтроллерах ARM Cortex-M3.
- 25. Типовые структуры алгоритмов обработки данных в микроконтроллерах ARM Cortex-M3.
- 26. Циклические программы м микроконтроллерах ARM Cortex-M3.
- 27. Форматы команд обращения к памяти в микроконтроллерах ARM Cortex-M3.
- 28. Представление функций в виде таблиц в ПЗУ команд.
- 29. Программа вычисления коэффициентов руда Фурье.
- 30. Цифровой БИХ-фильтр НЧ, структура, программная реализация.
- 31. Цифровой БИХ-фильтр ВЧ, структура, программная реализация.
- 32. Цифровой КИХ-фильтр, структура, программная реализация.

Типовые теоретические вопросы на экзамен по дисциплине:

- 1. Микроконтроллер как микропроцессорная система. Общие понятия, назначение, функциональный состав.
- 2. Архитектура МПС, назначение элементов архитектуры. Принстонская и гарвардская архитектуры, характерные признаки микроконтроллерных систем.
- 3. Архитектура микроконтроллеров MDR1986BE9x.
- 4. Система команд микроконтроллеров MDR1986BE9x.
- 5. Функциональный состав микроконтроллеров ARM Cortex-M3.
- 6. Распределение адресного пространства микроконтроллеров ARM Cortex-M3.
- 7. Организация устройств памяти микроконтроллеров ARM Cortex-M3.
- 8. Назначение контроллера тактовых частот в микроконтроллерах ARM Cortex-M3.
- 9. Назначение контроллера прерываний в микроконтроллерах ARM Cortex-M3.
- 10. Назначение контроллера прямого доступа к памяти в микроконтроллерах ARM Cortex-M3.
- 11. Классификация процессоров по разрядности и способам доступа к данным.
- 12. Назначение и классификация периферийных устройств МПС.
- 13. Назначение параллельных и последовательных интерфейсов.
- 14. Функции выводов микроконтроллера, альтернативные функции портов.
- 15. Внешние цепи системы на микроконтроллерах ARM Cortex- M3.
- 16. Параллельные порты МК ARM Cortex-M3, функциональные возможности, схемы включения внешних устройств.
- 17. Параллельные порты МК ARM Cortex-M3, функции регистров при программировании, выбор функции выводов порта, выбор аналогового или цифрового режима, выбор потребляемой мощности.
- 18. Последовательные порты МК ARM Cortex-M3, типы, функциональные возможности, схемы включения внешних устройств.
- 19. Таймеры МК ARM Cortex-M3, функциональные возможности, режимы работы.
- 20. Методы и средства преобразования аналоговых сигналов.
- 21. Аналого-цифровые преобразователи, классификация, принципы построения, реализация в микроконтроллерах семейства ARM Cortex, особенности применения.
- 22. Параллельный порт UART, структура, программная реализация.
- 23. Последовательный порт SP, структура, программная реализация.
- 24. Модуляция сигналов. ШИМ, АИМ, ЧИМ. Использование таймеров для формирования ШИМ.