МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Рязанский государственный радиотехнический университет имени В.Ф. Уткина»

Кафедра «Радиоуправления и связи»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

«Вычислительная математика»

11.03.02 Инфокоммуникационные технологии и системы связи

Направленность (профиль) подготовки

Программно-аппаратная инженерия в телекоммуникациях "интернет вещей"

Уровень подготовки

академический бакалавриат

Квалификация выпускника – бакалавр

Форма обучения – очная

1. Общие положения

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на практических занятиях.

Целью проведения практических занятий является углубление изучения разделов дисциплины с целью получения навыков применения теоретических знаний к решению практических задач. Средством текущего контроля по данному виду занятий является итоговое тестирование в письменной форме. Каждый студент получает вариант задания, состоящий из 5 вопросов, на которые нужно выбрать ответ. Результат тестирования учитывается преподавателем при проведении промежуточного контроля по дисциплине.

Промежуточный контроль по дисциплине осуществляется проведением зачета.

Форма проведения зачета — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый может составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки и т.п.

2. Паспорт фонда оценочных средств по дисциплине (модулю)

ОПК-1: Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности

ОПК-1.1. Использует положения, законы и методы естественных наук для решения задач инженерной деятельности

ОПК-1.2. Использует положения, законы и методы математики для решения задач инженерной деятельности

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой компетенции (или её части)	Наименование оценочного средства	
1	2	3	4	
1.	Основные понятия и положения курса. Погрешность вычислений.	ОПК-1.1 ОПК-1.2	Зачет	
2.	Методы решения нелинейных уравнений	ОПК-1.1 ОПК-1.2	Зачет	
3.	Методы решения систем линейных и нелинейных уравнений	ОПК-1.1 ОПК-1.2	Зачет	
4.	Приближение функций. Аппроксимация и интерполяция	ОПК-1.1 ОПК-1.2	Зачет	
5.	Численное дифференцирование и интегрирование	ОПК-1.1 ОПК-1.2	Зачет	
6.	Методы решения обыкновенных дифференциальных уравнений	ОПК-1.1 ОПК-1.2	Зачет	
7.	Методы решения дифференциальных уравнений в частных производных	ОПК-1.1 ОПК-1.2	Зачет	

3. Описание показателей и критериев оценивания компетенций на различных этапах их формирования

3.1 Тестирование

Типовые критерии оценки по 5-ти бальной шкале оценивания для контрольного задания в виде теста основаны на том, что правильный ответ на вопрос оценивается в 1 балл. Соответственно, количество правильных ответов формируют итоговую оценку за выполнение предложенного варианта задания.

3.2 Зачет

Критерии оценивания:

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Использование дополнительной литературы при подготовке ответов. Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

«Зачтено» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности понимании, изложении В использовании учебно-программного материала.

«Незачтено» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

4. Типовые контрольные задания или иные материалы

Примерный перечень теоретических вопросов к зачету по дисциплине «Вычислительная математика»

- 1. Погрешность. Абсолютная погрешность.
- 2. Погрешность. Относительная погрешность.
- 3. Значащие цифры.

- 4. Методы решения нелинейных уравнений. Метод половинного деления.
 - 5. Методы решения нелинейных уравнений. Метод итераций.
 - 6. Методы решения нелинейных уравнений. Метод ньютона.
- 7. Методы решения систем линейных и нелинейных уравнений. Метод Гаусса.
- 8. Методы решения систем линейных и нелинейных уравнений. Метод простой итерации.
- 9. Методы решения систем линейных и нелинейных уравнений. Метод Зейделя.
- 10. Метод простой итерации (метод Якоби) для систем нелинейных уравнений.
 - 11. Метод Ньютона для решения систем нелинейных уравнений.
 - 12. Аппроксимация методом наименьших квадратов.
 - 13. Интерполяция с помощью полинома Лагранжа.
 - 14. Интерполяция с помощью полинома Ньютона.
 - 15. Численное дифференцирование.
 - 16. Численное интегрирование. Формулы прямоугольников
 - 17. Численное интегрирование. Формулы трапеций.
 - 18. Численное интегрирование. Метод Симпсона.
- 19. Методы решения обыкновенных дифференциальных уравнений. Метод Эйлера.
- 20. Методы решения обыкновенных дифференциальных уравнений. Метод Рунге-Кутты.
- 21. Методы решения обыкновенных дифференциальных уравнений. Метод конечных разностей.

Типовые тестовые вопросы:

- 1. Какие объекты исследует вычислительная математика?
- 1) только непрерывные объекты
- 2) только дискретные объекты
- 3) как непрерывные, так и дискретные объекты

Правильный ответ: 3

- 2. Итерация это
- 1) метод координатного определения решения
- 2) принцип детализации детерминированных определений
- 3) последовательное приближение к решению

Правильный ответ: 3

- 3. Совокупность узлов называется
- 1) расчетной сеткой
- 2) сеточной областью

- 3) сеточной структурой Правильный ответ: 1,2
- 4. Имеется сетка на некотором отрезке [a, b]. Если расстояние между соседними узлами этой сетки одинаково, то она называется
- 1) равномерной
- 2) однообразной
- 3) равноопределенной

Правильный ответ: 1

- 5. Формулы численного интегрирования функций одного переменного называют
- 1) линейными формулами
- 2) квадратурными формулами
- 3) кубическими формулами

Правильный ответ: 2

- 6. В каком случае матрица считается невырожденной?
- 1) когда ее определитель неравен 0
- 2) когда на большой диагонали отсутствуют нули
- 3) когда малая диагональ не содержит нулей

Правильный ответ: 1

- 7. Вместо отрезка прямой в вычислительной математике рассматривается
- 1) заменяющая его система точек
- 2) матрица с координатами отрезка
- 3) вектор в полярной системе координат, направленный по этому отрезку Правильный ответ: 1
- 8. Для чего служат узлы расчетной сетки?
- 1) для запоминания точек интерполяции
- 2) для организации аппроксимации
- 3) в них вычисляется искомое решение

Правильный ответ: 3

- 9. К методам решения линейной системы ОДУ первого порядка следует отнести
- 1) метод полных детерминантов
- 2) метод гиперкорреляции коэффициентов
- 3) метод построения фундаментальных решений

Правильный ответ: 3

- 10. Непрерывная функция, получившаяся в результате интерполяции, называется
- 1) интерполянтом

- 2) интерполирующей
- 3) интерполяционной

Правильный ответ: 1,2

- 11. Приближенное вычисление определенного интеграла производится
- 1) на отрезке
- 2) на многомерной области
- 3) на детерминированном множестве интерпретаторов

Правильный ответ: 1,2

- 12. Пусть существует алгоритм, позволяющий абсолютно точно (не принимаем во внимание погрешности округления в ЭВМ) вычислить значения функции f(x) в любой точке на отрезке [0, 1]. Известно, что эта f(x) имеет непрерывные производные любого порядка. Но алгоритм вычисления f(x) очень сложный, каждое значение вычисляется очень долго. Требуется аппроксимировать f(x), чтобы ее можно было использовать в дальнейших расчетах (использовать большое количество значений, производных различных порядков и пр.). Какие из следующих замен при аппроксимации могут порождать погрешности в дальнейших расчетах (по сравнению со случаем использования абсолютно точной f(x))?
- 1) замена отрезка прямой системой точек
- 2) замена непрерывной функции табличной функцией
- 3) замена первой производной ее разностной аппроксимацией

Правильный ответ: 1,2,3

- 13. Простейшим способом интерполяции является
- 1) кусочно-линейная интерполяция
- 2) структурная интерполяция
- 3) интерполяция конечных отношений

Правильный ответ: 1

- 14. Для интегрирования таблично заданной функции наиболее эффективными методами следует считать
- 1) квадратурные формулы интерполяционного типа
- 2) правило Рунге оценки погрешности
- 3) кубические интерполяторы

Правильный ответ: 1,2

- 15. Решения однородной задачи составляют систему линейно независимых функций. Как найти численное решение каждой такой функции?
- 1) как решение соответствующей задачи Коши
- 2) как решение задачи аппроксимации Лагранжа
- 3) как интерполяционные разностные коэффициенты

Правильный ответ: 1,2

- 16. Простой аппарат кусочно-линейной интерполяции позволяет ввести объекты, на которых базируется
- 1) метод конечных элементов
- 2) метод дихотомии
- 3) метод хорд

Правильный ответ: 1,2

- 17. Формула прямоугольников с центральной точкой будет давать точное значение
- 1) в случае с интерпретационным кубическим интерполятором
- 2) в случае линейной функции
- 3) в случае комплексной аппроксимирующей функции

Правильный ответ: 1,2

- 18. Характерной чертой численного метода следует считать
- 1) экономичность вычислительного алгоритма
- 2) пропорциональность выходных данных
- 3) нестандартность в применении правил интегрирования и дифференцирования

Правильный ответ: 1,2

- 19. Решение аппроксимирующей разностной задачи сходится к решению исходной дифференциальной задачи, если
- 1) аппроксимирующая разностная задача устойчива
- 2) аппроксимирующая разностная задача аппроксимирует дифференциальную задачу
- 3) кубическая интерполяция коэффициентов аппроксимирующей разностной задачи дает положительные переменные

Правильный ответ: 1,2

- 20. Полную фундаментальную систему решений однородной задачи можно получить, используя
- 1) метод билинейной аппроксимации
- 2) метод касательных
- 3) метод трапеций

Правильный ответ: 1,2

Варианты практических заданий

Задание 1

Число x, все цифры которого верны в строгом смысле, округлить до трех значащих цифр. Для полученного результата $x_1 \approx x$ вычислить границы абсолютной и относительной погрешностей. В записи числа x_1 указать количество верных цифр по абсолютной и относительной погрешностям.

1. 3549 37,4781 7. 2. 32,147 0,183814 8. 3. 35,085 0.009145 4. 7,544 9. 11,3721 5. 198,745 10. 0,2538

Задание 2

Вычислить корень нелинейного уравнения методом касательных с заданной погрешностью вычисления $\varepsilon = 0,001$. Интервал изоляции корня указан в квадратных скобках. Вычисления выполнить: a) вручную, δ) в пакете MathCad.

 $\cos 3x - x_3 = 0$ [0,1;1,5]1. 2. tg x + x = 1[0; 1]3. $\sin(e_x) + 3x = 0$ [-1; 0,1] $x_2 + \sin_2 x = 2$ 4. [-1,5;-0,5]5. $x_4 - \sin_2 x + x = 1$ [0,5;1,5]6. $e_x(x-5)+3=0$ [-1; -0, 1][0,5;1,5]7. $x_5 - 2 \cos x = 0$ 8. $\cos_2 x - x_4 = 0$ [0,5;1]9. $e_{-x} - 3x - 5 = 0$ [-1; -0,5]10. $\sin x - x_2 + 1 = 0$ [1; 2]

Задание 3

Функция f(x) задана дискретно значениями yi в узлах xi.

Используя первую и вторую интерполяционную формулу Ньютона, вычислить значения функции f(x) в точке x = 1,7. Исходные данные приведены в таблице согласно номерам заданий.

		,								
χ_i	1	2	3	4	5	6	7	8	9	10
1,0	1,0	1,1	0,9	0,9	0,8	1,1	1,0	1,2	1,2	1,1
1,2	2,1	2,2	2,0	1,9	2,0	2,2	2,1	1,8	2,0	1,9
1,4	2,9	3,2	3,0	3,2	2,9	3,2	3,1	3,2	3,0	3,2
1,6	3,8	4,2	3,8	3,8	4,2	4,2	3,8	4,1	3,8	3,8
1,8	5,2	5,2	5,1	5,1	5,2	5,1	5,2	5,2	5,0	4,9
2,0	5,9	6,0	5,8	6,1	5,8	5,9	6,2	6,1	6,1	5,8

Задание 4

1. Вычислить определенный интеграл по формулам методов трапеций и метода Симпсона с шагом h=(b-a)/10. Сравнить полученные результаты.

1
$$f(x) = \sqrt{x^3 + 1}$$
, $a = -1$, $b = 9$
2 $f(x) = \frac{8}{(3x + 4)^2}$, $a = 0$, $b = 1$
3 $f(x) = \frac{1 + e^{2x}}{5}$, $a = 0$, $b = 3$
4 $f(x) = 3x + \ln x$, $a = 1$, $b = 2$

5
$$f(x) = \frac{12}{(4x-9)^2}$$
, $a = 0$, $b = 1$
6 $f(x) = \sqrt{x^3 + 8}$, $a = -2$, $b = 8$
7 $f(x) = \sqrt{27 - x^3}$, $a = -7$, $b = 3$
8 $f(x) = \frac{e^x}{x}$, $a = 1$, $b = 7$
9 $f(x) = \sqrt{2 - x^3}$, $a = -9$, $b = 1$
10 $f(x) = \frac{1}{1 + x}$, $a = 0$, $b = 9$

Залание 5

Используя метод Эйлера, составить таблицу приближенных значений интеграла дифференциального уравнения y' = f(x, y), удовлетворяющего начальным условиям $y(x_0) = y_0$; шаг h; интервал [a,b]. Результаты вычислений в таблицу записать с точностью 0,0001.

№	f(x,y)	[a,b]	$y(x_0) = y_0$	h
1	$3x^2 + 0.1xy$	[0; 1]	y(0) = 0,2	0,1
2	$x + \cos\left(\frac{y}{3}\right)$	[1,6; 2,6]	y(1,6) = 4,6	0,1
3	$x + \sin\left(\frac{y+1}{\sqrt{13}}\right)$	[0,2; 1,2]	y(0,2) = 1,1	0,1
4	$-3y + \sqrt{4x^2 + 1}$	[2,6; 4,6]	y(2,6) = 3,5	0,2
5	$e^{2x} + 0.25y^2$	[0; 0,5]	y(0) = 2,6	0,05
6	$\sin(x+y)+1,5$	[1,5; 2,5]	y(1,5) = 4,5	0,1
7	$2.5x + \cos(y + 0.6)$	[1; 3]	y(1) = 1,5	0,2
8	$\frac{1}{1+x^3y} + 2y$	[1,5; 2]	y(1,5) = 2,1	0,05
9	$1+2,2\sin x+1,5y^2$	[0; 1]	y(0) = 0	0,1
10	$\cos(x - y) + \frac{1,25y}{1,5+x}$	[0; 1]	y(0) = 0	0,1

Составил доцент кафедры РУС К.Т.Н.

С.Н. Круглов

Заведующий кафедрой РУС, к.т.н., доцент

В.Т. Дмитриев

Оператор ЭДО ООО "Компания "Тензор"